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This  report is an in t e r im  t e c h n i c a l  report which s 

r i z e s  one phase of research being carried o u t  a t  Purdue 

Universi ty  i n  t h e  area of communication theory under NASA 

Grant ,NsG-553. 

The r e p o r t  deals w i t h  t h e  problem of analog conmunica- 

t i o n  over a dispersive or mul t ipa th  channel.  This  research 

is c l o s e l y  related t o  the  s t u d i e s  of Lindenlaub and Bai ley,  

"Digital  Communication Systems Subject t o  Frequency Selective 

Fading, TR-EE67-17 and Hancock and Quincy , " J o i n t l y  O p t i m u m  

Waveforms and Receivers for Channels w i t h  Memory, 'I TR-EE66-7 

which were also supported under t h i s  gran t .  
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The purpose of t h i s  research has en to  investigate the 

wr nce of demoduzators for og cormmication over 

slawly tiae-varying, quency selective fading chanmb. 

For known chanaels, demdulatom optimal i n  the BmSe 

a-posteriori probability am derived for linecar 

modulation, but the resultant receiver structure 

for non-linear modulation is fotand t o  be impractical. A more 

A.ultf'ul approach considers optima2 passband e ~ i z a t i o n  of 

the transmitted 8% based on mjnimUm man-sqxtre error. 

nce of the dexnodulator optimal i n  this s e w  is 

investigated for cerbain exaxples of physical interest; It 5s 

fourid that selective fading causes an intrinsic loss in p e r  

I 
d 

ce relative to nonmfading channels, and that the length 

of the demdulator observation interval, directly related t o  

system coiuplmdty, is a lmiting %&or whenever fading is 

semre . 
Subopt ions t o  the 03Pt; demdU2ator 

consisting of a t-rsal equaZazer followed by )?os% 

egpalization filtering of various Mnds sre 



_- 

x i  

ulator to d termine whether these more easily 

nted syst@ms achieve ear-optimal performance. It is 

i n i ~ ~  mean-square error transversal 

equalizer with no postg~qualizat~on filtering is the most 

tern: it achieves near-optimal per- 

conditions, For noisy channels, 

1 demodulator performs well. 

el equalization techniques 

for estimating the effect of finite 

system perf orrnance , additional 

approxi~tion based on the assymptotic be: avior of the demod- 

ulator perform s the effect of finite observation 

time to be is0 fects due to noise, resulting in 

an a p p r o x i ~ ~ t ~  method for performance prdiction which 

requires only simple calculations. 

For unknown channels, methods for channel measurement are 

considered which use either the information-bearing signal 

to probe the ch nnel or a transmitted reference signal 

In both cases optimal channel multiplied with the message. 

state estimates are presented, and in the latter case the 

tion is carr d out over the reference signal as well, 

including an ext~~siv@ treatment of optimal and suboptimal 

signal design. It is found that the non-reference technique 

is impractical, but i s consideration leads to a bound in the 

ny system subject to a constraint on trans- 

bound very nearly achieved by the optimal 

f 
i 
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erence system i f  t he  fad ing  rate of t h e  chan- 

ne1 i n the  s i g n a l l i n g  bandwidth. 

The effect of i rfect channel measurements on demodu- 

lator performance i s  i ~ v e s t i g a t e d  i n  an e x a c t  manner for the 

case of s i n g l e - n ~ t c h  s e l e c t i v e  fad ing  by means of a l abor ious  

1 technique; t h i s  i n v e s t i g a t i o n  inc ludes  a study of 

optimal t r a n s m i t t e r  power d i v i s i o n .  

"exact" c a l c u l a t i o n s  p o i n t  t h e  way t o  a much simpler approxi- 

mate technique €or  calculating^ w i t h  reasonable accuracy, t h e  

effect of noisy channel measurements on system performance. 

T h i s  approximate a n a l y s i s  provides  formulas which are the  

foundation of a simplified design procedure for p red ic t ing  

t h e  overall performance of dispersive-channel communications 

sys t ems  i n  terms of s fundamental parameters of the chan- 

n e l  and t he  system itself. 

The r e s u l t s  of these 



CHAPTER 1: INTRODUCTION 
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l,1 Descript ion of t h e  Problem 

Many modern communications systems ope ra t e  over channels 

which e x h i b i t  severe  d i s p e r s i v e  e f f e c t s :  

forms are d i s t o r t e d  i n  t i m e  and frequency by t h e  channel. 

Dispersion might be caused by mul t ip l e  t ransmission pa ths ,  as 

i n  H. F. ionospheric  channels (11 o r  naviga t iona l  satell i te 

systems [ 3 ] .  Ref lec t ion  from an extended scatterer, such a s  

lunar  r e f l e c t i o n  [ 4 ] ,  can cause d i spe r s ion ,  as can d i f f u s e  

scatterers such as t h e  ionosphere,  troposphere,  or meteor 

t r i a l s  [2]. 

fundamentally l i m i t s  performance is  d i s t o r t i o n  due t o  d i spe r -  

s i o n  rather than a d d i t i v e  f l u c t u a t i o n  noise .  The purpose of 

t h i s  research has been t o  analyze techniques for mi t iga t ing  

d i spe r s ion  so t h a t  system performance may be improved. 

p a r t i c u l a r ,  analog communications systems a r e  considered. 

They are i n t e r e s t i n g  i n  t h e i r  own r i g h t  for voice  and t e l e m -  

e t r y  communication, and they provide u s e f u l  models f o r  highly 

multiplexed d i g i t a l  systems as w e l l .  

t r ansmi t ted  wave- 

I n  any system of t h i s  sort t h e  factor which 

I n  

1 .2  The System Under Consideration 

Figure 1-1 is  a p i c t o r i a l  r ep resen ta t ion  of t h e  system 

inves t iga ted  i n  t h i s  research. A message source,  a ( t ) ,  is 
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modeled by a s t a t i o n a r y  random process  w i t h  known 

trum, I t  is  o f t e n  convenient t o  assume also t h a t  

power spec- 

t h i s  source 

is  Gaussian. A f t e r  modulation the  r e s u l t a n t  waveform, s (t)  , 
is  passed through a d i s p e r s i v e  channel and received i n  t h e  

presence of a d d i t i v e  noise ,  N (t) e 

t o  recover t h e  message from t h e  dis tor ted channel ou tput ,  

y ( t ) .  I f  t h e  state of the d i s p e r s i v e  channel i s  unknown, it 

is  necessary t o  measure it t o  demodulate e f f i c i e n t l y ,  A 

measuring system i s  included f o r  t h i s  purpose, t h e  output  of 

which c o n t r o l s  channel-dependent parameters i n  t h e  demodula- 

tor. 

The demodulator attempts 

Many ques t ions  about t h i s  system are of i n t e r e s t :  

1. 

2. 

3 0  

How is t h e  channel charac te r ized?  

For a given channel s ta te ,  how is  the received 

s i g n a l  demodulated? Can an opt imal  demodula- 

to r  be def ined? I f  so, how w e l l  does it per- 

form? How do p r a c t i c a l ,  suboptimal demodula- 

tors compare t o  t h i s  performance? Can param- 

eters which are fundamental t o  system perform- 

ance be isolated? 

I f  t h e  channel is unknown, how can demodula- 

t i o n  be performed? What i s  the  performance 

of optimal methods? Does t h e  use  of a t r ans -  

m i t t e d  re fe rence  s i g n a l  s impl i fy  t h e  system? 

Can t h e  channel measurement system and refer- 

ence s i g n a l  be j o i n t l y  optimized? A r e  there 

simple schemes which are nea r ly  optimal? 
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4. What i s  t h e  effect of imperfect knowledge of 

the channel on demodulator performance? How 

can t r a n s m i t t e r  power be m o s t  p r o f i t a b l y  

divided between message and r e fe rence  s i g n a l s ?  

5. What parameters a r e  most important i n  char- 

a c t e r i z i n g  o v e r a l l  system performance? Can 

t h e  communication system be described by these 

parameters w i t h  s u f f i c i e n t  accuracy t o  permit 

"first cu t "  system design using s impl i f i ed  

methods? 

T h i s  r e p o r t  i s  an at tempt  t o  answer these quest ions.  

1.3 Channel Charac te r iza t ion  

Dispersive communication channels,  regardless of the 

phys ica l  o r i g i n s  of t h e  d ispers ion ,  a f f e c t  t h e  s i g n a l s  pass- 

i ng  through them i n  t h e  same general way: 

i npu t  w i l l  be d ispersed  i n  t i m e ,  and a s inuso ida l  i npu t  w i l l  

s u f f e r  s p e c t r a l  broadening. 

an impulsive 

Since m o s t  channels used for 

communications ( p a r t i c u l a r l y  electromagnetic channels) behave 

l i n e a r l y  [ 2 ] ,  t h e  channel is  gene ra l ly  represented as a 

l i n e a r  i n t e g r a l  opera t ion  on i t s  input ,  [ l l  , E21 , [51  . 

The channel i s  charac te r ized  by its time-varying impulse 

response,  h ( t , C ) ,  or, equiva len t ly ,  by i t s  frequency response 

function,H(w,t) ,  [61 . 

f 4 

.' 

'a 
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I n  t h i s  r e sea rch  t h e  t i m e  v a r i a t i o n  i n  t h e  channel model is 

assumed t o  be s l o w  with r e s p e c t  t o  t h e  s i g n a l l i n g  bandwidth, 

u sua l ly  t h e  case i n  H. F, and t r o p o s c a t t e r  channels (11 .  

( I f ,  as i n  o rb i ta l  d i p o l e  channels 171 , t h e  rate of channel 

v a r i a t i o n  is  g r e a t e r  than t h e  s i g n a l l i n g  bandwidth, then the  

channel i s  not  "measureable" [ 8 ]  except i n  a s t a t i s t i ca l  

sense,  and a waveform-dependent comunica t ion  technique such 

as analog t ransmission would be use less . )  

t i o n  permits  t h e  use of  a quas i - s t a t iona ry  channel model based 

This slow va r i a -  

upon a t ime-invariant  impulse response v a l i d  i n  some t i m e  

i n t e r v a l  c o n s i s t e n t  wi th  t h e  channel fad ing  rate. Channel 

t i m e  v a r i a t i o n s  can then be accounted f o r  by ensembles of 

t ime-invariant  channel states, and t h e  system w i l l  be inde- 

pendent of h i s t o r i c a l  t i m e .  

For band-limited systems the  tapped-delay-line approxi- 

mation to t h e  channel impulse response,  [6] , [9 ]  through [ l 3 ] ,  

is q u i t e  convenient and ex tens ive ly  used i n  t h i s  research. 

1 - 4  Known Dispersive Channels 

For channels modeled by known t ime-invariant  impulse 

responses,  t h e  extension of well-known continuous es t imat ion  

techniques,  [141 through 1171, t o  t h e  case of complex random 

processes  and post - n o n l i n e a r i t y  system memory permits  the  

d e r i v a t i o n  of analog demodulator s t r u c t u r e s  opt imal  i n  t he  
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sense of maximum a-poster io  i probabi l i ty .  For l i n e a r  modu- 

l a t i o n  t h i s  c r i t e r i o n  is  shown t o  be equ iva len t  t o  minimiz- 

i n g  mean square e ror ,and  the r e s u l t a n t  system i s  a form of 

Wiener-Bopf f i l ter  1181, The performance of such a system 

i n  the case of an i n f i n i t e  observat ion i n t e r v a l  bounds t h e  

performance of any physical  demodulator. The dependence of 

t h i s  bound or parameters such as fading depth and SMR' is 

i nves t iga t ed  for selective fading channels of phys ica l  

i n t e r e s t .  n i n t e r e s t i n g  outcome of these c a l c u l a t i o n s  is 

t h a t  there is  an i n t r i  ic loss i n  performance which can be 

associated w i t h  s e l e c t i v e  fading channels r e l a t i v e  t o  non- 

fading channels.  

A sampled-data formulation of the problem permits  inves- 

t i g a t i o n  of t h e  degradat ion of performance due t o  f i n i t e  

observat ion i n t e r v a l ,  an important parameter s i n c e  it is  

d i r e c t l y  related t o  system complexity. The r e s u l t a n t  sampled 

data system is  c l o s e l y  related i n  form t o  the  equa l i za t ion  

systems described by Tuf ts ,  [191 through [221,  George [231 

1243, and Niesson and Droui lhet  1251 for d i g i t a l  communica- 

t i o n s .  

t o  the minimum-mean-square error t r a n s v e r s a l  e q u a l i z e r  of 

Lucky and Rudin 1261. Analysis of t h e  performance of these 

c l o s e l y  related systems has led t o  some simple ways t o  pre- 

d i c t  t h e  degradat ion due to  f i n i t e  observat ion t i m e .  

I n  the l i m i t  of high S N R  these systems are equiva len t  

1 
Signal-to-Noise Ratio. 
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been 

Simpler equa l i ze r s  us ing  a zero-forcing algorithm have 

proposed by Lucky 1271 8 1281 I Ditoro [291 I 1301 , and 

Schreiver  1311. These systems are compared to  t h e  optimal 

system t o  determine the  condi t ions  under which increased 

system complexity gives worthwhile  performance gains .  

1.5 Unknown Channels 

When t h e  selective fading channel i s  unknown, accuara te  

i d e n t i f i c a t i o n  of t h e  channel s ta te  is requi red  t o  e f fec-  

t i v e l y  demodulate t h e  s igna l .  T h i s  i d e n t i f i c a t i o n  can i n  

p r i n c i p l e  be made by observing t h e  channel output  when i t s  

i n p u t  i s  a pure message-bearing s i g n a l ,  or the  channel can 

be d i r e c t l y  measured by t r ansmi t t i ng  a special r e fe rence  sig- 

n a l  for t h e  purpose. 

The f irst  technique is desirable i f  t h e  t r a n s m i t t e r  i s  

power-limited s ince no t r a n s m i t t e r  power need be d ive r t ed  t o  

channel measurement. This  no-reference m e t h o d  has been 

e f f e c t i v e l y  appl ied  t o  d i g i t a l  communications systems, [ 2 5 1  

through (281,  1311, i n  which dec i s ion  feedback may be used t o  

provide a v i r t u a l l y  noise-free l o c a l  r e fe rence  ecpivalen% t o  

a t ransmi t ted  re ference .  However, f o r  analog communication 

t h e  requi red  feedback opera t ions  are q u i t e  complex, and t h e  

r e s u l t a n t  local re ference  is  n o t  a t  all noise-free.  Van 

Trees [32] has der ived a feedback-type demodulator, b u t  it 

has non-causal elements i n  t h e  feedback loop which make i t s  

physical  mechanization i n  feedback form impossible without 

the  use of ideal p red ic to r s .  A non-feedback system, 
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t h e o r e t i c a l l y  r e a l i z a b l e ,  i s  inves t iga t ed  i n  t h i s  r e p o r t ;  

t h e  system is  very non-linear,  and exac t  performance a n a l y s i s  

has p r w e d  i n t r a c t a b l e .  However, t h i s  system is  the  s t a r t i n g  

p o i n t  for d e r i v a t i o n  of t he  Cram&-Rao bound [33] through 

E351 for simultaneous channel-s ta te  and message es t imat ion ,  

of theoretical i n t e r e s t .  

Use of a t ransmi t ted  r e fe rence  s i g n a l  t o  make channel 

measurements independent of modulation g r e a t l y  s impl i f ies  t h e  

cons t ruc t ion  and a n a l y s i s  of t h e  demodulator; these measure- 

ments are used t o  c o n t r o l  channel-dependent parameters i n  a 

receiver of “estimator-correlator” form E 361 . This  technique 

has been appl ied  t o  d i g i t a l  communications by s e v e r a l  au thors  

[271, [301, [361 through C391. Chesler  [ 4 0 ]  proposed an ana- 

log communication system using p i l o t  tones for  channel meas- 

urement b u t  did n o t  analyze the  performance of the  system. 

I t  i s  shown i n  t h i s  research t h a t  i f  t h e  re ference  

system is optimized, and some reasonable assumptions on 

channel s t a t i o n a r i t y  are made, then t h e  performance of an 

adapt ive  t ransmi t ted  r e fe rence  demodulator very nea r ly  

achieves t h e  Cramer-Rao bound. 

1.6 Channel Measurement 

Est imat ion of channel state us ing  a t ransmi t ted  refer- 

ence s i g n a l  and t h e  opt imizat ion of t h e  measurements have 

been studied using d i f f e r e n t  problem formulat ions by Root [ 8 ] ,  

Railath ( 4 1 1 ,  [421, and Turin 1431. I n  t h i s  r e p o r t  t h e  prob- 

l e m  is  reformulated w i t h  t h e  tapped de lay  l i n e  channel model 

‘1 



9 

explicitly accounted for. 

ularly convenient for implementation, and permits an easy 

derivation of a necessary and sufficient condition for opti- 

mal reference signals. 

extensively discu : optimal signals are found and compared 

in performance to easily-generated suboptimal signals such 

The resultant estimator is partic- 

The design of reference signals is 

sequences ( 4 4 1  e 

1.7 Overall System Performance 

Error at the output of an adaptive, dispersive-channel 

demodulator arises from three sources: 

1. Additive noise at the receiver input. 

2. Residual distortion due to incomplete "equal- 

ization" of the dispersive channel. 

3 .  "Mismatch" between the channel and demodu- 

lator caused by imperfect channel measure- 

ments. 

For a communication system subject to constraints on param- 

eters such as transmitter power, system complexity, or b m d -  

width-to-fading-rate ratio, these sources of error cannot be 

independently minimized: but there usually exists a choice of 

design parameters for which the total error is a minimum, A 

large part of this research has been an investigation of the 

effect on system performance of this choice of parameters, 

and a comparison of suboptimal systems to the bounds provided 

by optimal systems. 
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Equations which exac t ly  describe t h e  performance of the  

adapt ive  demodulators considered i n  t h i s  r e p o r t  were derived 

for the  case of noisy channel measurements, and evaluated 

numerically f o r  vera1  cases of physical  i n t e r e s t  to g ive  

i n s i g h t  i n t o  t h e  problem. 

extremely d i f f i c u l t ;  t h e  equat ions are of non-linear matr ix  

form and r e q u i r e  numerical  i n t eg ra t ion .  However, an approxi- 

mation technique which e f f e c t i v e l y  e l imina te s  the  non- 

l i n e a r i t y ,  r e s u l t i n g  i n  v a s t  s i m p l i f i c a t i o n s ,  has been found 

t o  be i n  good agreement w i t h  t h e  ' 'exact" r e s u l t s .  T h i s  s i m -  

p l i f i e d  form permits one t o  make r ap id  estimates of system 

performance as a func t ion  of gross channel parameters such as 

bandwidth, fad ing- ra te ,  s e v e r i t y  of fading,  and delay spread, 

and of fundamental design parameters such as SMR and observa- 

t i o n  t i m e .  A consequence of t h i s  s impl i f i ed  a n a l y s i s  is an  

a n a l y t i c a l  expression for  opt imal ly  d iv id ing  t r a n s m i t t e r  

power between message and re ference  s i g n a l s  which closely 

f i t s  the r e s u l t s  obtained by numerical  opt imizat ion.  

These nexactu c a l c u l a t i o n s  are 

This  r e p o r t  i s  devoted t o  comparison of va r ious  tech- 

niques for  analog communication over  selective fad ing  chan- 

n e l s  to provide a b a s i s  f o r  the e f f i c i e n t  overall design of 

systems f o r  t h i s  purpose. 

Chapter 2 describes optimal methods fox analog comuni-  

c a t i o n  over d i s p e r s i v e  channels under t he  condi t ion t h a t  t he  

channel state is known. The performance of such systems is  

i 
d 
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studied to provide bounds on the performance of any simpler 

systems operating over the same channel. 

cussion of some suboptimal methods which have been proposed 

for communicating over dispersive channels. Their perform- 

ance is analy ed and compared to the results of Chapter 2. 

Chapter 3 is a dis- 

Chapter 4 considers the measurement of unknown channels. 

Both transmitted-reference and non-reference estimators are 

investigated and compared to the Cram&-Rao bound for simul- 

taneous estimation of channel and message. Optimal and sub- 

optimal reference signal designs are discussed. 

treats the effect of noisy channel measurements on demodula- 

tor performance and treats the problem of optimal transmitter 

power division. 

Chapter 5 

The results of numerical evaluation of the 

exact performance equations are presented, and an approximate 

analytical technique of reasonable accuracy discussed. 

Chapter 6 summariz s the main conclusions of the research and 

includes some suggestions for additional work. 
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CHAPTER 2: OPTI L DEMODULATI 

I n  t h i s  chapter  w e  consider  optimal techniques for com-  

municating over kn d i s p e r s i v e  channels when t h e  channel 

s ta te  is  known (or has been measured without error) ,  A f t e r  

a br ief  d i scuss ion  of channel modeling, t h e  op t ima l i ty  c r i -  

t e r i o n  of maximum a -pos t e r io r i  p r o b a b i l i t y  i s  inves t iga t ed ;  

and r e c e i v e r  t r u c t u r e s  for l i n e a r  and phase modulation 

derived. Consideration of these s t r u c t u r e s  i n d i c a t e s  t h a t  a 

more p r a c t i c a l  approach t o  the  demodulation problem is t o  

use  l i n e a r  passband e q u a l i z e r s  under a mean square error 

op t ima l i ty  c r i t e r i o n .  

formance are derived us ing  Wiener-Hopf techniques for t h e  

case of i n f i n i t e  observat ion i n t e r v a l s ,  and sampled-data tech- 

niques f o r  f i n i t e  i n t e r v a l s ,  

General  expressions for system per- 

These expressions are evalu- 

ated f o r  c e r t a i n  examples of phys ica l  i n t e r e s t ,  l ead ing  t o  

some genera l  observ t i o n s  about t h e  assymptotic behavior of 

optimal an t i -d i spe r s ion  systems. 

I n  s e c t i o n  1,3 it w a s  assumed t h a t  t h e  t i m e  v a r i a t i o n  of 

t h e  channel w a s  s u f f i c i e n t l y  s l o w  compared t o  t h e  s i g n a l l i n g  

bandwidth t h a t  t h e  channel frequency response could be 
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modeled by a time-invariant transfer function,' H (  j w )  , valid 
over a time interval consistent with the quasi-stationary 

assumption. If the signals transmitted over the channel are 

essentially band-limited to the frequency band, -nw w - < ww, 

then H(jo) need be represented only over this same band. An 

exponential Fourier series can thus be used to approximate 

H ( j w ) ;  the mean square error with respect to uniform fre- 

quency weighting will be minimized for a finite approximation. 

(2-23 

The impulse response of the equivalent bandlimited channel 

becomes 

resulting in the familiar tapped delay line channel model [6]. 

Since any physical channel will have an essentially time- 

limited impulse response, a nominal "delay spread," Tc, can 

be associated with the channel. 

terms in (2-1) or (2-3) required for adequate 

Tc determines the number of 

'Throughout this report all signals, impulse responses , 
etc., will be assumed to be the re-envelo es of the corre- 
sponding narrow band physical quantities * See reference [ll, 
p. 2 8 5 ) .  
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channel r ep resen ta t ion  ( i e e e ,  nc 1 WTc delay elements are 

needed i n  t h e  model) 

All channels considered i n  t h i s  r e p o r t  w i l l  be assumed 

to  be exac t ly  represented by a f i n i t e  number of t e r m s ,  nc. 
1 Thus , 

"C 
h ( t )  = 1 h k d E  - VJ 

k = l  

It  is convenient t o  assume t h a t  a l l  channels,  r ega rd le s s  of 

t h e  na tu re  of t h e i r  fad ing ,  are pass ive  and d i s s i p a t i o n l e s s ;  

t h i s  permits  comparison of t h e  e f f e c t s  due t o  d i f f e r e n t  

channel states independent of power cons idera t ions .  

m a l i  z a t ion  condi t ion  

The nor- 

a s su res  t h a t  s i g n a l s  with a f l a t  spectrum have t h e  same aver- 

age power a t  both t h e  inpu t  and ou tpu t  of t h e  channel.  I t  i s  

also convenient t o  assume t h a t  time and frequency s c a l i n g  has 

been performed to  make t h e  two-sided bandwidth of t h e  system, 

2W, equal  t o  un i ty ;  t h e  t a p  spacing i n  t h e  channel model i s  

then  one second. 

'It w i l l  be convenient a t  t i m e s  t o  use a non-causal 
representa t ion .  
channel c a u s a l  w i l l  be lumped with t h e  propagation delay.  

Any f ixed  t i m e  advance requi red  t o  make t h e  
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Example Channels 

The performance of demodulators fo r  s e l e c t i v e  fad ing  

channels is q u i t e  s e n s i t i v e  t o  t h e  state of t h e  channel.  I t  

i s  impossible t o  cons ider  a l l  allowable channel states, so w e  

are led t o  choose some examples of d i f f e r e n t  channels on 

phys ica l  grounds, c a l c u l a t e  performance, and then i n t e r p r e t  

t he  r e s u l t s  as gene ra l ly  as poss ib l e  on t h e  basis of i n s i g h t  

gained f r o m  t h e  c a l c u l a t i o n s ,  

The amount of f i n e - s t r u c t u r e  i n  frequency response which 

can be simulated by a delay  l i n e  channel model depends upon 

t h e  number of  t a p s ,  nc, used for r ep resen ta t ion ,  It has  been 

found t h a t  f i v e  t a p  m o d e l s  genera te  reasonably real is t ic  fad- 

ing  e f f e c t s ,  so examples of t h i s  form were chosen t o  f i n d  t h e  

e f f e c t  of var ious  types  of fad ing  on demodulator performance. 

S ix  of these examples are referred t o  throughout t h e  report: 

t h e i r  impulse responses are given i n  Table 2-1, and Figure 

2-1 and 2-2 show t h e  corresponding frequency responses.  

Table 2-1, Impulse Responses for Example Channels, 

h4 h5 7 Channel N o .  - hl  - h2 h3 - - 
1 1.0 0 0 7  O m 4  0.1 0.0 

2 1.0 0.6 0.2 0.1 0,05 

3 

4 

5 

6 

1.0 0.5 0.0 -0.5 -0 .1  

1 - 0  O m 4  0.4 0.4 Q * 4  

100  0.9 O m 8  0.7 0.1  

1.0 0 .1  -0.5 002 -0.1 



FIGURE 2- 1. 
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Channel I 

(..--.l--.-u Channel 2 

--- Channel 3 

FREQUENCY RESPONSE FUNCTIONS FOR 
EXAMPLE CHANNELS ( 5  TAP). 
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FIGURE 2-2. FREQUENCY RESPONSE FUNCTIONS F0 
EXAMPLE CHANNELS ( 5  TAP). 
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or reasons of computational 

tap-gain c o e f f i c i e n t s ,  which 

ease these examples have - real  

makes their  bandpass frequency 

responses s y  tr ical  about t h e  carrier frequency. The loss 

i n  g e n e r a l i t y  due t o  real  c o e f f i c i e n t s  i s  s m a l l  because t h e  

Fourier  series e pansion for  the bandpass channel could have 

been a one-sided one w i t h  t h e  re ference  frequency taken a t  

the  lower edge of t h e  passband; t h e  r e s u l t a n t  pre-envelope 

would then have been symmetrical, 

Examination of Figures  2-1,  2-2, and Table 1-1 show 

channels 1 and 2 t o  be of the  lowpass- f i l t e r  var ie ty ,  channel 

1 having a sharper  high-frequency cu tof f  than channel 2. 

Channel 3 has a s i n g l e  undershoot i n  i t s  impulse response; 

and its spectrum e x h i b i t s  a frequency-selective "notch." 

Channel 4 is  an  example of a channel w i t h  a long multipath- 

spread, i t s  spectrum shows a double notch, Channel 5 i l l u s -  

trates t h e  effect of severe, adjacent-mult ipath,  and i t s  f r e -  

quency response has very deep fading. Channel 6 is  an oscil-  

l a t o r y  channel;  it shows a peaking effect i n  the passband, 

and an extreme fade  a t  the band edge as w e l l .  

Examples such as these have provided a g r e a t  deal of 

i n s i g h t  i n t o  e f f e c t s  caused by d i s p e r s i v e  channels i n  general .  

S ingle-Notch Selective Fading 

The s imples t  poss ib l e  m o d e l  of selective fad ing  c o n s i s t s  

of a s i n g l e  fading notch i n  the  system passband. Only t w o  

t a p s  i n  t he  channel model are requi red  t o  s imula te  t h i s  

e f f e c t .  That is ,  i f  
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a (t) 

then t h e  channel frequency response has a s i n g l e  notch which 

appears a t  frequency w o  whose depth i s  controlled by t h e  

parameter,  r. ( 

r+O the  fading d isappears  ) 

+-1 t h e  fad ing  depth goes t o  i n f i n i t y ;  as 

T h i s  simple mode1 r e q u i r e s  a m~nimum of computational 

complexity, and 

of r e s u l t s  which are n o t  c l u t t e r e d  by second-order e f f e c t s  

due t o  a d d i t i o n a l  f i n e  s t r u c t u r e  i n  t h e  channel model. 

o s a t i s f y i n g  phys ica l  i n t e r p r e t a t i o n s  

Modula' - - -  

2.2 Optima1 Demodulation 

The waveform observable by t h e  demodulator, y ( t ) ,  is  

produced by t h e  system shown i n  Figure 2-3. 

Figure 2-3. Transmit ter  and Channel Model. 

The message, a ( t ) ,  i s  assumed t o  be a zero-man,  s t a t i o n a r y ,  

Gaussian random process  w i t h  known covariance. A zero-memory 

modulation s t e p  produces t h e  s i g n a l  s ( a , t )  which i s  t r ans -  

mitted over t h e  d i s p e r s i v e  channel,  h ( t ) .  Additive,  zero- 

mean, s t a t i o n a r y  Gaussian no i se ,  N ( t ) ,  p e r tu rbs  t h e  received 

s igna l ;  a ( t )  and N ( t )  are assumed t o  be s t a t i s t i c a l l y  indepen- 

den t  since they 
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The purpose of the demodulator is to estimate the mes- 

sage given the observed channel autput and any available 

a-priori statistical knowledge of the message. In finite 

dimensional estimation problems the technique of choosing the 

message estima e, s, to be that value of a which maximizes 

the a-posteriori probability density function (the 

criterion) is well known. Generalizations of this technique 

to the waveform estimation problem have been made by a number 

of authors, fl 1 through f161. Their technique has been to 

reduce the random processes to coordinates using the Karhuren- 

Lohve expansion, find the MAP estimates based on a finite num- 

ber of these coordinates, and generalize to the continuous 

case by formal limit-laking, The derivations are not rigor- 

ously justified, but the results are reasonable physically. 

A more straightforward approach is to use the notion of a 

probability density functional on a vector space of waveforms. 

Parzen' has shown that the vector space must be a reproduc- 

ing kernel Hilbert space to make a valid definition of this 

functional, and considers several examples, one of which is 

directly applicable to the linear modulation case of this 

report. Although the extension to non-linear modulation is 

not obvious, this approach will be taken without proof to 

derive estimates in this section. The resultant estimator 

'Parzen, E. , "Probability Density Functionals and 
Reproducing Kernel Hilbert Spaces," Chapter 11 of Time Series 

Rosenblatt, ed,, John Wiley and S o n s T w m  , M. 
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1 agrees  wi th  t h e  r e s u l t  obtained by applying Middleton's 

expansion f o r  complex random processes t o  an exten- 

s i o n  of W i l l i a m s '  I161 work t o  t h e  case of pos t -nonl inear i ty  

channel memory. 

The MAP E s t i m a t e  

I f  - -  a ,  x, and y r ep resen t  f i n i t e  dimensional vec to r s  

whose components are time samples of t h e  waveforms depic ted  

i n  Figure 2-3, t he  a-posteriori d e n s i t y  func t ion  p(a/x) - ckn 
be wr i t ten  i n  t h e  fol lowing way. 2 ,  3 

l& and 

K(y) i s  a scalar func t ion  independent of t h e  message, a. - 
maximization of p(a/x) w i t h  r e s p e c t  t o  a is equiva len t  t o  

minimizing t h e  term i n  braces i n  (2-7). T h i s  t e r m ,  c a l l  it 

E ~ ,  may be w r i t t e n  i n  inner  product form. 

are t h e  message and no i se  covariance ope ra to r s ,  and 

The 

'Reference [ 5 ] ,  p. 388. 

'Notation: Vectors are denoted by s i n g l e  underscore,  
matrices by double underscore;  t ranspose  is denoted by super- 
s c r i p t  T, and complex conjugate  by s u p e r s c r i p t  *; lower case 
p s tands  for  a p r o b a b i l i t y  d e n s i t y  funct ion.  

3For a discuss ion  of t h e  d e n s i t y  func t ion  for complex- 
envelope v a r i a b l e s ,  see Wooding, R, A., "The Mul t iva r i a t e  
D i s t r ibu t ion  of Complex Normal  Variables," B iomet r ika ,  V o l .  43, 
June, 1956. 
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The c r i t e r i o n  for  the  continuous case w i l l  be def ined t o  

be t h e  formal extension of (2-8) t o  t h e  vec tor  space of con- 

t inuous func t ions ,  

Suppose y ( t )  i s  observed over  t h e  t i m e  in te rva l ,T ,of  

length  To. 

Then, for a channel w i t h  de lay  spread Tc, y ( t )  depends upon 

a ( t )  for  p o i n t s  of t i m e  i n  the  i n t e r v a l  Ta. 

- To - Tc t to) - - Ta = (t: to (2-10) 

Denoting t h e  convolution opera t ion  bye4 , c 2  is w r i t t e n  

A A  

(2-11) 

The func t ions  % ' ( . I  and Ri'(.) are t h e  inve r se  covari-  

ance operators €or noise  and message, and they  w i l l  be 

,assumed t o  ex is t . '  c 2  can now be optimized w i t h  respect t o  

'For s t a t i o n a r y  random processes w i t h  r a t i o n a l  power 
spec t r a ,  t h e  inverse  operator can be found i n  t e r m s  of gener- 
a l ized €unct ions by t h e  method i n  r e fe rence  [5], Appendix E. 

*i  
.i I 
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a(t) by the variational procedure of Appendix A, The result- 

ant necessary condition on the estimate, ii(t), of the message 

waveform is the integral equation 

where 

T a=a 

- G(U)]dU, (2-12) 

(2-13) 

Equation (2-12) describes an estimation procedure which is 

physically unrealizable. However, it is possible to inter- 

pret this equation to give the structure of the demodulator 

or the type of operations required if we consider unrealiz- 

able filtering operations carried out Over an infinite obser- 

vation interval, Let us then assume that the set T of (2-9) 

is the entire real line, and also that the additive noise is 

essentially white with two-sided spectral density No 8 and 

examine the specific structure of the estimator, (2-12). 

A). This case includes 

the possibilities of double-sideband A.M. (a(t) real) 8 and 

single-sideband A.M. (the imaginary part of a(t) is the 
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H i l b e r t  transform of t h e  real  p a r t ) ,  

(2-12) w e  ob ta in  

S u b s t i t u t i n g  i n t o  
1 

(2-14) 

I f  R C a ( t )  is  regarded as t h e  impulse response of an unrea l iz -  

able l i n e a r  f i l ter ,  t h e  demodulator may be diagrammed as i n  

Figure 2-4, 

Replica I 
h ( t )  

Figure 2-4. Demodulator Block D i a g r a m  for Linear Modulation. 

Since most of t h i s  r e p o r t  is devoted t o  d iscuss ion  of t h i s  

system, it w i l l  n o t  be treated i n  more detai l  here. 

( t - r )  denotes  t h e  c r o s s c o r r e l a t i o n  between t w o  ran- xy 
dom processes ,  x ( t )  and y ( t ) ,  i,e. 

R ( t - r )  = E [ X ( T j  y * ( t ) l .  
XY 
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B. Angle Modulation, s ( t )  = eja( t ) .  I n  t h i s  case 

a ( t )  may be assumed real, and, making use of t h e  tapped delay 

l i n e  channel m o d e l ,  (2-Q), t h e  following r e l a t i o n s  are t r u e .  

(2-15) 

ik(~) = i ( ~  - (k-1)) 

S u b s t i t u t i n g  i n t o  (2-12) w e  now ob ta in  

(2-2-7) 

where 

m fk(t) = - h* R (t + k - 1) No k a (2-19) 
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Equation (2-18) can be block diagrammed as shown i n  

F i g u r e  2 - 5 ,  a fee back demodulator d i f f e r i n g  f r o m  Van Trees' 

r e s u l t  [32] i n  t h a t  a bank of f i l ters i s  required:  Van Trees' 

needed only one f i l t e r  because of h i s  assumption of a zero- 
- 

mean,purely random channel. 

The s t r u c t u r e  of t h e  r e c e i v e r  is seen t o  be i n  t h e  form 

of a general ized phase-lock loop, The combinations of t h e  

m u l t i p l i e r s  and t h e  OOphase shifter g ive  equiva len t  s inuso i -  

d a l  phase detectors. One inpu t  t o  each of the  phase detec- 

tors  is  an appropr i a t e ly  delayed vers ion  of t h e  r e c e i v e r ' s  

estimate of what t h e  t ransmi t ted  s i g n a l  s ( t )  is, so t h a t  t h e  

receiver i s  r e a l l y  t r y i n g  t o  isolate  each component of the  

incoming mult ipath,  and t o  d e r i v e  from t h i s  a co r rec t ion  sig- 

n a l  t o  be applied t o  t h e  phase modulator. T h i s  seems a log- 

ical  t h i n g  t o  do. 

However, t h e  cons t ruc t ion  of such a r ece ive r  would be 

d i f f i c u l t  because of t h e  un rea l i zab le  na tu re  of t h e  block 

diagram. The feedback must be instantaneous i n  order t o  g ive  

t h e  proper  error s i g n a l s  from t h e  phase detectors, bu t  any 

phys ica l  de lay  l i n e  w i l l  cause a real  de lay  of Tc seconds 

between the  received s i g n a l  and the  estimate. T h i s  means w e  

would have t o  bu i ld  a system which predicts T, seconds ahead 

of t h e  input .  Although it is  possible t o  b u i l d  predictors 

based on the  s ta t is t ical  knowledge of t h e  message, t h e  pre- 

d i c t i o n  t i m e  i n  t h i s  case has t o  be nc-1 times t h e  nominal 

c o r r e l a t i o n  t i m e  of t h e  s igna l .  Thus the  p red ic t ion  would be 

almost e n t i r e l y  s ta t is t ical .  Since t h e  u t i l i t y  of t h e  
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phase-lock loop is based on p r e c i s e ,  instantaneous phase cor- 

rection, the  very idea is n e ~ a  ed when a predictor i s  used. 

Another s e r i o u s  d i f f i c u l t y  w i t h  t h i s  form of system is  

t h a t  of cross-modulation products,  Since the  inpu t  t o  each 

phase detector is  a - sum of delayed ve r s ions  of t h e  t r ans -  

mitted s i g n a l ,  there w i l l ,  i n  general ,  be a non-zero phase 

detector output  even though there might be a zero phase error 

between the  estimate and a given mult ipath of t h e  

received s i g n a l .  T h i s  would lead t o  false c o r r e c t i o n  signals, 

poss ib ly  w i t h  t he  wrong s ign.  

Although t h i s  receiver s t r u c t u r e  merits c l o s e r  i n v e s t i -  

ga t ion ,  it does n o t  appear t o  be p r a c t i c a l  as it s tands .  

Fortunately,  there is  another  technique for combating d i spe r -  

s i o n  i n  t h e  case of angle  modulation: an t i -d i spe r s ion  meas- 

u r e s  can be taken before  demodulation is attempted. T 

s ( t )  could be estimated (rather than a ( t ) )  and s tandard,  non- 

d i s p e r s i v e  demodulation techniques appl ied  t o  t h i s  es t imate .  

Since t h i s  "equal iza t ion"  procedure i s  l i n e a r ,  t h e  case of 

non-linear,  angle  demodulation i s  n o t  treated i n  detai l  i n  

t h i s  research .  

I f  w e  are t o  restrict ourse lves  t o  equiva len t  l i n e a r  

demodulation techniques,  then it is l o g i c a l  t o  use t h e  cri-  

te r ion  more e a s i l y  i n t e r p r e t e d  i n  terms of conventional per- 

formance indices such as s ignal- to-noise  ra t io  than is  t h e  

c r i t e r i o n  of maximum a - p o s t e r i o r i  p robab i l i t y .  I t  i s  easy 
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t o  show, us ing  s tandard  Wiener-Hopf techniques [451 ,  t h a t  t h e  

minimum mean s are l i n e a r  estimate of t h e  message a ( t )  is  

of t h e  form 

(2-20) 

where f ( t )  i s  t h e  impulse response of l i n e a r  filter s a t i s f y -  

ing  t h e  Wiener-Hopf i n t e g r a l  equation, 

Appendix €3 shows tha t ,  for  t h e  l i n e a r  demodulation case, t h e  

MAP e s t ima te  of t h e  preceding s e c t i o n  i s  f u l l y  equiva len t  t o  

t h e  estimate given by (2-20) and ( 2 - 2 l ) ,  so d i s t i n c t i o n  

between t h e  t w o  cr i ter ia  need no longer be made. 

Equation (2-21) is  w e l l  known to  have a s o l u t i o n  for  

phys ica l ly  reasonable c o r r e l a t i o n  functions,  [la61 , bu t  t h e  

ease of f ind ing  e x p l i c i t  s o l u t i o n s  is  g r e a t l y  dependent upon 

assumptions regard ing  t h e  observat ion "window," T (See Ewa- 

t i o n  (2 -9 ) .  A f i n i t e  i n t e r v a l  makes e x p l i c i t  s o l u t i o n s  q u i t e  

d i f f i c u l t  t o  obtain:  

a p p l i e s  t o  problems i n  which the  c o r r e l a t i o n  func t ions  of 

(2-21) have r a t i o n a l  Four ie r  transforms (see Appendix A of 

t h e  only sys temat ic  method of s o l u t i o n  

[IS]), which is  n o t  t r u e  for t h i s  problem due t o  t h e  pure 

de lay  i n  t h e  channel model. Also, t h i s  technique is  n o t  

amenable to  e f f i c i e n t  s o l u t i o n  by computer. For t h i s  reason 
1 
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the  case of f i n i t e  observation i n t e r v a l s  has been treated by 

t ak ing  advantage of the  bandlimited n a t u r e  of t h e  s i g n a l s  and 

using a sampled-data formulation of t h i s  problem, discussed 

i n  a la ter  sec t ion .  

I f  t h e  observat ion i n t e r v a l  is i n f i n i t e ,  then (2-21)  can 

be solved us ing  Four ie r  transform methods. 

t h i s  case provides a bound on the  performance of any communi- 

c a t i o n  system opera t ing  over a given s e l e c t i v e  fad ing  chan- 

ne l .  I t  i s  n o t  d i f f i c u l t  t o  so lve  (2-21) under those condi- 

t i o n s ;  t he  r e s u l t a n t  frequency response func t ion ,  F(jw), fcs 

t h e  optimal demodulator is  of t h e  f o r m  

Consideration of 

(2-22) 

where S x a ( w )  and S (wl are spectral d e n s i t i e s  cosrespondir3 

t o  t h e  c o r r e l a t i o n  func t ions  R,(T) and R (T). 

input-output  r e l a t i o n s  of Figure 2-3?and using p rope r t i e s  of 

random s i g n a l s  passed through l i n e a r  systems, (2-22) can be 

Y 
Noting t h e  

Y 

w r i t t e n  as 

N o t e  that i n  t h e  absence of noise  the  frequency response of 

the  optimal,  i n f i n i t e  observat ion i n t e r v a l  demodulator is  

j u s t  the inverse  of t h e  frequency response func t ion  of  t h e  

channel. 
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The mean square error associated w i t h  t h i s  system is 

ca l cu la t ed  using s tandard Wiener-Hopf methods. 

(2-24) 

Equation (2-24) provides a bound on t h e  performance a t t a i n -  

able using any phys ica l  communication system opera t ing  over 

the  d i s p e r s i v e  channel,  H ( j w ) ,  and i s  consequently u s e f u l  f o r  

comparing w i t h  the  actual  performance of t h e  system t o  see i f  

it i s  nea r ly  optimal.  However, before eva lua t ing  t h i s  bound 

le t  u s  consider the  case of a f i n i t e  observa t ion  i n t e r v a l  by 

formulating t h e  demodulation problem i n  discrete time-sample 

form. 

2.4 The Sampled-Data Formulation 

I n  the  preceding s e c t i o n  t h e  d i f f i c u l t y  of f i n d i n g  

e x p l i c i k  s o l u t i o n s  t o  t h e  Wiener-Hopf i n t e g r a l  equat ion,  

(2-21) ,  for  f i n i t e  observat ion i n t e r v a l s  w a s  d iscussed.  

Because t h e  length  05 t h i s  i n t e r v a l ,  T o ,  can be related to  

the  complexity of the  requi red  demodulatorpas is shown i n  
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rate of fading 

because the magnitude of To is limited by the 

in the channel, this case is of crucial impor- 

tance. 

incorporates the length of this interval and provides results 

which are theoretically useful and computationally efficient. 

In Section 2.1 it was assumed that the system was essen- 

A sampled-data approach to the problem automatically 

tially bandlimited to a normalized frequency interval, 

-n - w - < n, so that samples taken at the Nyquist rate  (once 

per second) are a sufficient representation for the random 

processes involved, 

Suppose the dispersive channel is represented by nc taps 

in the delay line model (thus the channel delay spread is 

Tc = nc - 1) and that the channel output is observed for an 
integral number of seconds, To, starting at t = 0. 

referring to Figure 2-3, the observed waveform can be written 

Then , 

Let y, N, - and - a be vectors of time samples of the correspond- 
ing waveforms with the kth component defined to be 

, k = 1,2, ... To 
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Then, i f  w e  def ine a TOx(TO+Tc) channel matric g t o  be 

h 

. 
e 

. 
(2-26) 

the time-sampled channel output can be expressed a s  

y " g d + "  - . (2-27) 

By assumptioxba - and N - are s t a t i s t i c a l l y  independent, zero- 

mean, Gaussian random vectors with stationary covariance 

matrices given by 

P 

i 
x 

The a-posteriori density function for - a given y can then be 

expressed a s  follows. 

(2-281 

I- 1 
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A procedure analogous 

exponents of (2-28) leads t o  the f o r m  below. 

2 
a n = -  
2 
N 

(T 

0 
(2 -3  1) 

 he q u a n t i t y  Q- '~*T g-i i s  the  mean va lue  of t h e  a - p o s t e r i o r i  

d e n s i t y  func t ion  for  - a ,  so t h i s  q u a n t i t y  must be the  minimum 

mean square Bayes estimate for t h e  message vec to r  - all That 
is  , 

is t h e  estimator of a which minimizes t h e  mean square demod- 

u l a t i o n  error; 

mat r ix  is seen 

h 
e 

- 
from (2-29) t h e  normalized error covariance 

t o  be 

1 1 '  = - cov(i-a)  = - Q- 
n - -  2 

a t7 
. (2-33) 

I 
'See re ference  [21 , Chapter 5. 
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The parameter n is seen t o  be t h e  i n p u t  SNR (s ignal- to-noise  

power ra t io)  f o r  the  system3 and, s i n c e  the  error var iance  i s  

equal  t o  the  noise  power a t  t h e  demodulator ou tput ,  t he  diag- 

ona l  elements of 4 can be i n t e r p r e t e d  as t h e  r e c i p r o c a l  of 

t h e  output  SNR's for each message component. Thus (2-33) may 

be used for computing the  effect of f i n i t e  observat ion i n t e r -  

v a l  on system performance. 

2.5 Performance of O p t i m a l  Demodulators 

Equation (2-24)  determines t h e  u l t i m a t e  performance of 

any phys ica l  demodulator . Equation (2-33) g ives  a similar 

bound f o r  a f i n i t e  observat ion i n t e r v a l .  It  is  of great 

i n t e r e s t  t o  examine t h e  way i n  which s e l e c t i v e  fad ing  chan- 

n e l s  a f f e c t  these measures of u l t i m a t e  system performance. 

The equat ions  for mean square error depend upon t h e  

channel state and t h e  power s p e c t r a ,  or covariance matrices, 

of both the  message and no i se  random processes.  Since these 

q u a n t i t i e s  can take on an endless  number of possible forms, 

it is necessary t o  cons ider  i d e a l i z a t i o n s  of a c t u a l  channels 

and s p e c t r a  which r e t a i n  only t h e  most important,  basic param- 

eters which a f f e c t  system performance. 

forms are discussed below. 

These s impl i f i ed  

A. Channel State. The modeling of the  channel w a s  

treated i n  Sec t ion  2.1. 

frequency responses which are so complex t h a t  t h e i r  main use- 

fu lness  is t o  show that nothing c a t a s t r o p h i c  happens t o  per- 

formance when fine detail is p resen t  i n  t h e  channel model. 

The f ive- tap  example channels have 
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Examples of single-n tch s e l e c t i v e  fad ing  permit  s impl i f i ed  

i n t e r p r e t a t i o n  of the  r e s u l t s  i n  t e r m s  of fad ing  depth and 

placement of the  fading notch, t h e  m o s t  important parameters 

descr ib ing  s e l e c t i v e  fading. 

e I n  t h i s  report t w o  examples 

of message power spectrum are considered: messages w i t h  a 

f l a t  spectrum over t h e  frequency band - T  - -  < w < n ,  and messages 

w i t h  a power spectrum 

2 2a  u 

The f i r s t  case makes a l l  po r t ions  of t h e  frequency band 

equal ly  important and can be regarded as t h e  zeroth ordes 

i d e a l i z a t i o n  f o r  message spec t ra .  The second case g ives  non- 

uniform weighting across t h e  frequency band,and t h e  r e s u l t s  

are s e n s i t i v e  t o  t h e  frequency a t  which fad ing  occurs.  T h i s  

case has some use fu l  a n a l y t i c a l  properties: a Gaussian ran- 

dom process  w i t h  power spectrum (2-34)  is  a first order 

Markov process;  t h e  inverse  of t h e  normalized covariance 

matr ix  of t h i s  process  is  the simple t r i d i a g o n a l  form shown 

below, for a r b i t r a r y  order. 

b 
1 s 

" J  3 
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I -X 

-a x = e  . 

(2-35) 

Choosing a = 0.75 insures that 85 percent of the message 

power is contained in the frequency band -li - e w - e n ,  so the 

message is essentially bandlimited. 

C. The Noise Spectrum, The additive noise will be 

assumed to be white and bandlimited, a situation typically 

true in practice. However, in some calculations it is con- 

venient to have a rational noise spectrum, and in these cases 

the form of the noise spectrum will be assumed to be 

2bag 2 
SN(4 = , b = 2  e 

w2+ b2 
( 2 - 3 6 )  

The bandwidth parameter b is chosen to be b = 2 to make the 

equivalent white noise bandwidth, Weq, defined as 
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(2-37) 

1 equal  t o  2, t h e  assumed channel bandwidth. 

no ise  power, aNB equal  t o  t h e  no i se  spectral d e n s i t y ,  SN(0). 

T h i s  makes t h e  

a l y t i c a l  Resul t s  

Using t h e  above assumptions about t he  s i g n a l  and noise 

spec t r a  one can eva lua te  (2-24) or (2 -33)  for t h e  

mean square demodulation error €or any channel state.  How- 

ever, it is  poss ib l e  t o  develop some r e l a t i v e l y  simple analy- 

t i ca l  expressions €or demodulator performance for the case of 

single-notch s e l e c t i v e  fad ing  which provide i n s i g h t  i n t o  the 

genera l  problem. 

Let us  assume a channel frequency response,  

with power t r a n s f e r  func t ion  

2 I H ( ~ u > ]  = I - ~ P C O S ( W - W ~ )  , 

1 
P =  2 ' 2  * 

Then, f o r  the case  of a f l a t  message spectrum, 

(2 -38)  

(2 -39)  

(2 -40  
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and an i n f i n i t e  observat ion i n t e r v a l ,  Equation (2-24) can be 

i m d - i a t e l y  evaluated. 1 

where 

n 

I 
1 1 

1 2  
= - .  

2 - 4 P  
n 

J(l+ 4 rl 

2 
a 

N 

0 
n =  - = i npu t  SNR 

0 2  
. 

(2-41) 

(2-42) 

(2-43) 

For t h e  Markov message process  of (2-34) t h e  i n t e g r a t i o n  

is  n o t  so s t ra ight forward ,  bu t  it is poss ib l e  t o  approximate 

the t ranscendenta l  channel frequency response func t ion  by a 

r a t i o n a l  Pad6 approximantz to o b t a i n  an a n a l y t i c a l  r e s u l t  i n  

e s s e n t i a l l y  p e r f e c t  agreement w i t h  r e s u l t s  ca l cu la t ed  numer- 

i c a l l y .  The (1,l) Pad6 approximant t o  the  u n i t  de lay  func- 

t i o n ,  e- jw ,  is 

%Wight, H. B., Tables of I n t e g r a l s  and O t h e r  Mathemat- 
ical  Data, t o  Macmillan, 1961,  p,  218. 

‘Truxal,  J. G., Control System Synthes is ,  McGraw H i l l ,  
New York, 1955, p. 548, 



- j w  e s 0 

40 

(2-44) 

n t h i s  approximation is used i n  (2-38) and the  r a t i o n a l  

s i g n a l  spectrum, (2-3 1 I and r a t i o n a l  n o i s e  spectrum, (2-36) I 

are assumed, then  t h e  i n t e g r a l  for  mean square errorp ( 2 - 2 4 ) ,  

may be evaluated using r e s idue  c a l c u l u s  t o  ob ta in  t h e  follow- 

i n g  r e s u l t .  

(2-45) 

- 2.67 b 
q = z = o , S s -  . (2-46)  

Since c 2  is t h e  output  no i se  power of t h e  demodulator, the  

q u a n t i t y  a;/c2 can be regarded as the  output  SMR. 

uniform frequency weighting ( f l a t  message spectrum) I 

Thus, for  

(2-47)  

whi le  for a Markov message source 

SNRo = nJ1-4p2+  -[(q+q-1)-2Pcosw,(q-q 1 -1 1 I +  ;;z 1 
q 

(2-48)  

Examination of (2-47) and 12-48) shows t h a t  t h e  placement of 

the  s e l e c t i v e  fad ing  notch ( w o )  makes no d i f f e r e n c e  i n  t h e  

case of a f l a t  message spectrum, whi le  it does affect  per- 

formance a t  low i n p u t  SNR's f o r  t h e  Markov message source,  
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equat ions  may be related t o  t h e  depth 

of t h e  selective fad ing  notch us ing  Equation (2-39). L e t t i n g  

D denote t he  fad ing  depth i n  d B ,  w e  f ind  t h a t  

4 0 2  = [1 - 10 (2-50) 

Figure 2-6 shows t he  effects of va r ious  parameters on 

system performance for a 

(2-48) .  On t e scale of Figure 2-6, t he  performance for a 

w h i t e  message source i s  v i r t u a l l y  i n d i s t i n g u i s h a b l e  from 

t h e  case of mid-band fad ing  (wO=v/2)  and t h e  Markov source,  

Note t h a t  as fad ing  depth inc reases  it becomes more and more 

d i f f i c u l t  t o  improve system performance by merely increas ing  

the  i n p u t  SNR (or t r a n s m i t t e r  power): 

i ng ly  l imited by d i spe r s ion  rather than by additive noise ,  

Note also t h a t  t he  placement of t h e  fad ing  notch i s  more 

important f o r  low-performance systems than for  higbperform- 

ance ones. 

peak of t h e  s i g n a l  spectrum, and performance improves as t h e  

notch approaches t h e  band edge. Increas ing  r e l i a n c e  must be 

placed upon a-priori s ta t is t ical  knowledge of t h e  message as 

t h e  i n p u t  SNR gets small; and, s i n c e  there is  more observable 

message information a t  the c e n t e r  of t h e  frequency band than  

a t  the  band edge, center-band fad ing  must be t h e  most severe.  

performance i s  increas-  

The worst case occurs when the  notch i s  a t  t h e  
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As t he  i n p u t  SNR gets large t h e  output  SNR becomes inde- 

e n t  of the  ssage spectrum. That is ,  

SNR, - Jl"$p2n . (2-51) 

For p=O, t h e  no ersive channel,  t h e  output  SNR goes up 

as t h e  i n p u t  SN 

observed i n  practice. However, i n  t h e  s e l e c t i v e  fad ing  case 

there is a d i  t i n c t  degradat ion i n  performance compared to 

t h e  non-fading case, despite t h e  fact  t h a t  t h e  channel was 

normalized t o  a s su re  no power ga in  or loss regardless of t h e  

ch i s  w e l l  known t o  be the  dependence 

fad ing  depth,  (pass ive  and d i s s i p a t i o n l e s s  channel) .  This  

r e s u l t  i s  q u i t e  s i g n i f i c a n t ,  €or it means t h a t  no amount of 

sophisticated rece ive r  design can ever completely overcome 

the  d e l e t e r i o u s  effects of channel d i spers ion .  The a c t u a l  

amount of t h i s  i r r e d u c i b l e  loss depends on t h e  exac t  na tu re  

of t h e  channel,  and could be regarded as a measure of t h e  

degradat ion i n  "channel capac i ty"  caused by s e l e c t i v e  fading. 

Numerical  Resul t s  

I f  t h e  case of f i n i t e  observat ion i n t e r v a l s  i s  t o  be 

considered,  or w e  w i s h  to examine t h e  effects of higher-order 

channels,  then numerical  methods must i n  genera l  be used to 

eva lua te  equat ions  (2-24) and (2-33). However, for the  case 

of single-notch selective fad ing  it is  possible t o  a n a l y t i -  

c a l l y  i n v e r t  t h e  matr ix  (2-33), which v a s t l y  reduces t h e  

numerical  effort  required.  T h i s  matrix invers ion  is  

described i n  Appendix C. 
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Figure 2-7 shows the effect of a finite observation 

in a1 on optimal dem or performance for single-notch 

selective fading and a flat message spectrum, The Markov 

message source gives similar results except that the curves 

are shifted up or down depending on the placement of the fad- 

ing notch, These results were computed using Equation 

(2-331, using that point estimator of the message which gives 

the smallest diagonal element of (2-33). (We estimate one 

point in time of he continuous waveform and "slide" the 

incoming data through the resultant demodulator.) 

for deep fading channels system performance is primarily 

limited by the observation interval rather than additive 

noise, i.e., there is severe degradation compared to the 

infinite observation interval case when the fading is deep 

and the observation interval small, Recalling that the obser-- 

vation interval is limited by the rate of fading, it is 

apparent that systems operating over channels exhibiting 

severe, rapid fading will fall far short of the performance 

given by the infinite observation interval case, 

Note that 

Figure 2-8 and Figure 2-9 show the results of computinq 

(2-24) for the five-tap example channels of Section 2.1. 

These examples show the same irreducible loss in performance 

due to selective fading as do the single-notch fading exam- 

ples. 

state and, as n+=, is given by the expression 

The exact amount of this loss depends upon the channel 

4 s *.a 
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(2-52)  

Figure 2-10 and 2-11 i l l u s t r a t e  t h e  effect of f i n i t e  

observat ion i n t e r v a l ,  T o p  o modulator performance Only 

t w o  examples are shown, bu t  t h e  t r ends  are t h e  same for  a l l  

examples i f  t h e  scales f o r  i npu t  and output  SNR are extended 

or contracted:  there is  an upper l i m i t  on performance due t o  

t h e  f i n i t e ’  observat ion i n t e r v a l ,  and t h e  numerical  value of 

t h i s  l i m i t  depends upon the  exac t  s ta te  of t h e  channel;  t h e  

performance of t h e  system approaches the  case of an i n f i n i t e  

observat ion i n t e r v a l  as  the  inpu t  SNR decreases; s e l e c t i v e  

fad ing  a lone  causes  a performance degradat ion r e l a t i v e  t o  a 

non-f ading channel.  
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CHAPTER 3: SUBOPTIMAL DISPERSIVE CHANNEL DEMODULATORS 

In this chapter approximations to the optimal demodula- 

tor for known dispersive channels are considered to see the 

conditions under which simple suboptimal systems are nearly 

optimal, It is shown that the optimal filtering operation 

may be regarded as the cascade of two operations - channel 
inversion and post-inversion filtering. The inversion (equal- 

ization) operation may be implemented with relative ease in 

the cases of two different equalization algorithms discussed. 

An analysis and comparison of the performance of these 

equalizers leads to a simple method for predicting the depend- 

ence of the equalization error on the length of the observa- 

tion interval, a parameter related to system complexity. 

When the channel is noisy, post-inversion filtering is 

required to give near-optimal performance. Various approxi- 

mations to the ideal filter are analyzed for performance, 

leading to some general conclusions concerning the effective- 

ness of different suboptimal demodulators. Finally, an 

approximate technique for rapid prediction of the performance 

of demodulation schemes for known dispersive channels is 

developed, This method requires only simple computations of 

assymptotes . 



The minimum an-square error demodulator 

i n f i n i t e  observat ion i n t e r v a l s ,  by (2-23), 

and f o r  f i n i t e  i n t e r v a l s  by (2-32) a 

s2 

3.1 Optimal Demodulator Approximation 

Equation (3-2) is  a c t u a l l y  t h e  estimator f o r  t he  e n t i r e  set 

w a s  given, f o r  

I (3-1) 

(3-2) 

of message samples; i n  p r a c t i c e  one would choose t h a t  p o i n t  

estimator of t h e  message which minimizes t h e  mean-square 

error: t h a t  is, i f  &, is  t h a t  message sample estimate w i t h  

minimum error, then 

where cT - is  t h e  kth r of  t h e  matr ix  of (3-2). The vec tor  

c can be i n t e r p r e t e d  as t h e  set of tap-gain c o e f f i c i e n t s  of 

a t r a n s v e r s a l  f i l t e r ’  ope ra t ing  on the  observed waveform, 

Note t h a t  as t h e  observat ion i n t e r v a l  is increased there i s  

a propor t iona te  inc rease  i n  t h e  number of de lay  elements and 

t a p  ga in  computers of t h e  t r a n s v e r s a l  f i l t e r ,  so t h a t  system 

complexity is a t  l e a s t  p ropor t iona l  t o  t h e  length of t h i s  

’Bennett, W. R,, J a  R. Davey, Data Transmission, McGraw- 
H i l l ,  N e w  York, 1965, p. 269. 



53 

interval. Note a so that the channel sta te  appears in a very 

complex way (a matrix inverse) in computing cp - so this opti- 
mal system is not easily adapted to changing channel states. 

Consequently, it is of interest to consider suboptimal dernod- 

ulator algorithms which are more easily adapted to changing 

nnel states than the optimal system0 hence more amenable 

for construction. 

Let us rewrite (3-1) as follows: 

2 
a , n = -  2 
N 

U 

G(w) = 
Sa(-w)/O, 0 

(3-5) 

G(w) is an a-priori determined filter function independent of 

the channel. Examination of (3 -4 )  reveals that the optimal 

filter may be regarded as two successive operations on the 

data: channel inversion and post-inversion filtering. Since 

we are assuming dispersion-limited communications it is 

apparent that the channel inversion operation is the more 

significant of the two operations in improving performance, 

That is, the input SNRp 0 0  might be large enough that F(jw) 

could be approximated by a few terms in the expansion 
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Suppose then that C ( j w )  is some approximation to the channel 

inverse, 

Then 

The higher order terms in ( 3 - 8 )  may be realized by cascading 

stages of channel inversion, so the crux of the realization 

of dispersive channel demodulators lies in finding approxima- 

tions, C ( j w ) ,  to the channel inverse which can be mechanized 

with reasonably simple systems, 

Later in the chapter the post-inversion filtering oper- 

ation is investigated, but for the moment let us consider the 

inversion ("equalization") operation alone. In particular, 

let us consider the easily implemented transversal filter 

approximation, 

- jkw 
C ( j w )  = 1 cke e 

k 
(3-9)  

The most obvious way to approximate the channel inverse 

is to use an exponential Fourier series, since (3-9) is an 

expansion of this form. That is, choose the {c,) such that 

I- 

7 J 

3 



-1 

which a s su res  t h a t  the norm error c 2  is a minimum. 

A n 
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(3-10) 

-1 

1 I t  is  convenient a t  t h i s  p o i n t  t o  in t roduce  t h e  z transform, 

2 = e jW,  and i nne r  pr  

where 

1 -k> % = <rn I (3-131 

(3-14) 

The no ta t ion  g*(z-’) refers t o  the  reciprocal polynomial* of 

g ( z ) ;  the  polynomial obtained by r ep lac ing  z by z-’ and us ing  

the  complex conjugate  c o e f f i c i e n t s .  The contour of 

’Truxal, Y. G. , Control  System Synthes is ,  M c G r a w - H i l l ,  
New York, 1955. 

’Grenander, U. and Go Szego, Toepl i tz  Forms and Their 
Aqplicat ions,  Universi ty  of C a l i f o r n i a  P r e s s ,  Berkeley, 
Ca l i fo rn ia ,  1958, p. 3. 



56 

i n t e g r a t i o n  i s  around t h e  u n i t  circle i n  t h e  p o s i t i v e  sense ,  

When the channel is represented by a de lay  l i n e  model, 

(3-16) 

then t h e  i n n e r  products of (3-12) - (3-15) involve only poly- 

s i n  z ,  and may be calculated by s t r a i g h t f o r w a r d  resi- 

due calculus. '  

t o  be d i f f i c u l t  t o  implement, b u t  it tu rns  o u t  t h a t  t h e  

Fourier  series approximation has the  proper ty  of fo rc ing  

zeros i n  the "sidelobes" of the equal ized channel ou tput ,  

C(z) H(z) . 
a l l  t h e  terms of C(z)  H(z)  except  the  cons t an t  t e r m , )  T h i s  

i s  t h e  algori thm used by Lucky [ 2 7 ] ,  [ 2 8 ] ,  DiToro [ 2 9 ] ,  [ 3 0 ] ,  

and Schreiver  [31] i n  mechanizing t h e i r  t r a n s v e r s a l  equa l i -  

This  algorithm would appear a t  f irst  glance 

(Sidelobes are def ined  t o  be the  c o e f f i c i e n t s  of 

zers .  

venien t  for c a l c u l a t i n g  performance, however, than t h e  formu- 

l a t i o n s  used by the  

The Four ie r  series approach taken here is  far more con- 

T h i s  zero-forcing proper ty  is  demonstrated as follows. 

Suppose t h a t  

( 3-17) 

Then t h e  o v e r a l l  response of the  channel and e q u a l i z e r  i s  

H(z) C ( z ) ,  i d e a l l y  equal  to u n i t y ,  

'Churchhill,  R,  V., Complex Variables  and Applicat ions , 
M c G r a w - H i l l ,  N e w  Uork , 1 9 m  , 



57 

I 
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r.*i 

m+o -1 

r=-0 

C 
= 1 c%rz-r I 

where 

(3-18) 

For -(n-r1~+1) < r - < m we may subst i tute  (3-13) i n t o  (3-19) to 

obtain 

(3-20) 
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f o r c e s  zeros  i n  t h e  overall response for 

the first m p o s i t i v e  sidelobes and m+nc- l  negat ive sidelobes. 

1 property of t h i s  invers ion  algori thm is  

is  causa l  i f  H(z)  is  minimum-phase (no 

u n i t  disc) I Suppose t h a t  (3-16) i s  fac- 

tored i n t o  t h e  f o  

{ 3-21) 

so t h a t  H(z)  is  ~in imurnophas~ i f  IrQl e 1, Q = ~ f . I . u n c - l I  

S u b s t i t u t i n g  i n t o  (3-13) w e  obtain 

. (3-22) 

-phase channel t h e  integrand of (3-22) is  analy- 

t i c  on t h e  u n i t  disc i f  k c Q ,  making ck=Q f o r  e 0 ,  a causa l  

(It is  also apparent  t h a t  i f  H(z) I_ is  a n a l y t i c  on lizer. 

t he  u n i t  disc, =Q for keO, a completely non-causal 

system.) 

n e l  with no zeros  ou t s ide  t h e  u n i t  circle t o  have an inverse  

w i t h  no poles  ou t s ide  the  u n i t  circle (no negat ive t i m e  

T h i s  makes good sense s i n c e  w e  would expect a chan- 

response) .  
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The above remar~s show t h a t  the  equa l i ze r ,  (3=-17), is  

one-sided i f  the roots of t h e  channel,  H(z)  , are a l l  ei ther 

i n s i d e  or ou t s ide  the  u n i t  circle, When there is  a mixture 

of roots i n s i d e  a d ou t s ide ,  the equa l i ze r  w i l l  be two-sided, 

so t h a t  there w i l l  be n optimum choice of t h e  number of pos i -  

t i v e  and negat ive taps, s u b j e c t  t~ a c o n s t r a i n t  on t h e  t o t a l  

number of taps (obse t i o n  i n t e r v a l )  a The requi red  juggl ing 

of the number of positive and negat ive  taps t o  achieve t h i s  

optimum is  n o t  amenable t o  ana lys i s .  However, the  experience 

of many examples i n d i c a t e s  t h a t  the  performance of this f u l l y  

optimized system i s  e s s e n t i a l l y  t he  same as t h e  performance 

f o r  a channel whose zeros  ou t s ide  t h e  u n i t  disc have been 

reflected i n t o  the  u n i t  disc; t h i s  "equiva len tH channel has 

a one-sided equa l i ze r  r equ i r ing  no opt imizat ion.  

there appears t o  be l i t t l e  loss of g e n e r a l i t y  i n  consider ing 

only minimum-phase channels i n  eva lua t ing  performance. 

Consequently, 

Performance Analysis 

The index of performance for the  channel invers ion  

approximation w i l l  be t h e  mean-square equa l i za t ion  error, 

(3-23) 

rather than the  approximation norm of (3 -14) .  Equation (3-23) 

has more phys ica l  meaning than (3-14) and is e a s i l y  calcu-  

lated i f  use i f  made of (3-1'8) through (3-20). 

As i n  Chapter 2 ,  simple examples of selective fad ing  

channels lead t o  a n a l y t i c a l  r e s u l t s  which provide i n s i g h t  
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i n t o  the  more genera l  cases. F i r s t  consider  s i n g l e -  

notch s e l e c t i v e  fading,  

for which (3-23) i s  q u i t e  simple t o  eva lua te  us ing  r e s idue  

ca l cu lus  : 

where To is  t h e  length  of the  observat ion i n t e r v a l .  

n i tude  of the  channel zero,  r ,  i s  related o t h e  depth of 

s e l e c t i v e  fading by (2-  9 )  N o t e  t h a t  on a decibel  scale t h e  

equa l i ze r  error is propor t iona l  t o  t h e  observat ion i n t e r v a l ,  

the cons tan t  of p r o p o r t i o n a l i t y  depending upon the  fading 

depth.  

The mag- 

For higher-order channel models t h e  t r ends  a r e  gene ra l ly  

t h e  same: to see t h i s  consider a channel w i t h  two zeros.  

The equa l i za t ion  error for  t h i s  channel may be shown t o  be 

e 

2 
r 2  

r l  
1 - -  

(3-27) 

e channel roots are well separated ( i n  radius),  i . ee  
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0 
< <  1 , 

then 

(3-28) 

This  r e s u l t  i s  g e similar t o  (3-25): t h e  error is  domin- 

- ated by t h a t  roo losest t o  the  u n i t  circle, and there is a 

m u l t i p l i c a t i v e  factor ( i n t e r c e p t  on decibel scale) which 

causes a degradat ion i n  performance relative t o  (3-25) ., 

To see what happens when he channel roots are not  well 

separated,  cons ider  t h e  case of t w o  conjugate  channel roots: 

S u b s t i t u t i n g  i n t o  (3-27) w e  obtain 

N o w  there is an o s c i l l a t o r y  m u l t i p l i c a t i v e  factor, b u t  the 

dependence upon To is s t i l l  dominated by the  channel root 

r a d i u s  ., 

The degenerate case of mul t ip le  channel zeros is 

obtained by s e t t i n g  w 0  0 i n  ( 3 - 3 0 )  e 
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2 
E 9 2 2  + I: To] (3-31) 

I n  t h i s  case t h e  dependence 

(on a d B  scale): however, mu l t ip l e  channel zeros  would be 

un l ike ly  t o  occur phys i ca l ly ,  

pon To is  n o t  b a s i c a l l y  l i n e a r  

Calcu la t ions  of the  equa l i za t ion  error for  higher-order 

channels g e t s  a l g e b r a i c a l l y  complicated,  and are best done 

numerically.  These c a l c u l a t i o n s  show t h a t  t h e  performance 

t r ends  are similar t o  those of t h e  preceding examples: i n  

p a r t i c u l a r ,  t h e  dependence upon To is  b a s i c a l l y  l i n e a r  and 

the  rate of improvement depends upon t h a t  channel zero  clos- 

est t o  t h e  u n i t  circle, T h i s  p o i n t  w i l l  be discussed more 

f u l l y  i n  t h e  next  s e c t i o n ,  where t h e  performance of t h e  

Fourier  series equa l i ze r  i s  compared t o  a somewhat d i f f e r e n t  

equa l i ze r .  

3.3 The Minimum Mean-Square Equal izer  

Although the  c r i t e r i o n  used t o  eva lua te  the  performance 

of the  Fourier  series e q u a l i z e r  w a s  t h e  mean square equa l i -  

za t ion  error, t h a t  a lgori thm w a s  n o t  optimal i n  t h i s  sense.  

I t  is  thus  logical t o  consider  the  optimal t r a n s v e r s a l  equal-  

i z e r ,  success fu l ly  mechanized for telephone channels by 

Lucky and Rudin [265,  t o  see whether t h i s  more complex system 

performs s i g n i f i c a n t l y  better than the zero-forcing equa l i ze r .  

L e t  us assume a causa l  e q u a l i z e r  of t h e  form 

(3-32) 

*I 
3 
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- ,  
t 

where any required non-causali ty is r e a l i z e d  by 

is, i f  n seconds of de lay  are requi red ,  the equa l i za t ion  

error is  

-n 1 = 2 - H ( 2 )  C ( z  a 

he m o s t  genera l  form f o r  mean square error is  

(3-33)  

where R,(z) i s  a weight ing  func t ion ,  t y p i c a l l y  t h e  z trans- 

form of the message au tocor re l a t ion  func t ion  .l 

may be w r i t t e n  as 

a his error 

which can be i n t e r p r e t e d  as the  channel invers ion  error w i t h  

r e s p e c t  to t h e  no noun if or^ weighting func t ion  

Defining t h e  new, weighted inner-product 

(3-36)  

lpor a f l a t  message spectrum, R,(Z) = 1, while f o r  t h e  
Markov message source of s e c t i o n  2.5 I 

-22 Sinha 
(2-e -a (z-ea)  
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we may use the Gram-Schmidt 

basis €unctions i $ k ( z )  1, such that 

procedure’ to find a sequence of 

(3-38)  

The required orthogonal basis functions are given explicitly 

by the recursion formula below. 

Then the equalizer which minimizes (3-35) is j u s t  the expan- 

sion 

(3-40) 

with corresponding equalization error given by 
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0 )  has been substituted for C ( z )  in the last step, 

he various inner products in Equations 

1) requires only the simple manipulation 

of polynomials of z to find residues of poles within the unit 

circle, an efficient omputational technique which was used 

he calculations in this section except the 

-notch fading, a special case which will be 

treated ~hortly e 

he discussion of the Fourier series equalizer it w 

shown that equalizer is causal for minimum-phase channels, a 

reasonable result since a channel with no zeros outside the 

unit disc in the z plane would be expected to have no corxe- 

sponding poles in its approximate inverse (the equalizer). 

This was a useful property because it eliminated the need for 

juggling the number of positive and negative tap gains in an 

equalizer of given length to find the best combination, 

is conjectured that this property is also true for the mini- 

mum mean square error equalizer. 

borne out in a l l  the examples considered, but a proof could 

not be fond. However, its truth will be assumed in the 

It 

This conjecture has been 

discussion to follow. 

1 expression for the minimum mean-square 

equalizer performance can be obtained €or the case of single- 

notch selective fading by noting that the optimal messaqe 

estimator given by Equations (3-2) and (3 -3 )  must reduce to 

the optimal equalizer in the limit as the noise goes to zero. 

ms are transversal filters which minimize the mean 
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or under i d e n ~ i c a ~  c d i t i o n s ,  so the  t r u t h  of t h e  

s ta tement  should be apparent.  The formal proof of equivalence 

is omitted for e of brev i ty .  W e  can thus  obta in  t h e  

re equa l i za t ion  error by l e t t i n g  0- i n  t h e  

iance  of the optimal demodula- 

to r l  Equation (2-33). 

(3-42) 

The diagonal elements of t h i s  rnatr,x are the  mean-square 

errors associa ed w i t h  a l l  poss ib l e  equa l i ze r s  of length  

To = m seconds. The lower right-ha corner  element of (3 -42)  

corresponds t o  t h e  c a u s a l  t r a n s v e r s a l  f i l t e r  which ope ra t e s  

only on t h e  p re sen t  and p a s t  va lues  of the channel output .  

I n  accordance w i t h  our  previous con jec tu re  on c a u s a l i t y ,  t h i s  

w i l l  be assumed t o  be t h e  b e s t  choice of e q u a l i z e r  t a p  gains  

f o r  a rninirnumbphase channel.  

For single-notch selective fad ing  channels,  

(3-43) 

t he  matr ix  (3-  2) w a s  e v ~ l ~ t e d  i n  Appendix C. Its lower 

right-hand corner  ele n t  i s  given by Equation (C-241, fo r  a 

f l a t  message spectrum. 

'The Markov mes age case is  also given i n  Appendix C bu t  
w i l l  n o t  be d i scusse  i n  t h i s  s e c t i o n  because it is n o t  
d i r e c t l y  comparable t h e  Four ie r  series equa l i ze r ,  for which 
an unweighted perfor nce index, (3-23) , w a s  used. 

'II 
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2 l - r  
l - ( r ) O  2 T +1 

or for the optimal equalizer, 

he condition for mi m phase. Com- 

h the corresponding result for the 

i n ~ e r t ~ r ~  (3-25), we see that the opti- 

significantly better f o r  severe fading 

ed by Figure 3-1. (D denotes t h e  fad- 

ing depth in decibels, rela to r by (2-49) * )  Note that 

o equalizers have assymptotically parallel error curvesd 

he "y intercept" for the optimal equalizer can kc; 

3-2 shows the performance of the optimal equali- 

zer for the two-root channel defined by (3-26) and (3-283 for 

angular separations of the roots. The dashed line 

mance of an optimal equalizer for a singbe- 

ding channel with the same root radius, r. As was 

he Fourier series equalizer, the performance i s  

d by the root adius, but there are oscillatory devi- 

tions in the e r curve similar to ( 3 - 3 0 ) .  The case of 

oots ( w 0  = 0)  is degenerate in that the 

e m e  is not purely exponential. 

Figures 3-3 and 3-4 sh ualizer performance for the 

five-tap example channels 
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give the performance 

notch fading channel 

the five-tap channel 

of an optimal equalizer for a single- 

with its root taken to be that root of 

closest to the unit circle. Note that 

the optimal equalizer performance is rather well described by 

the “equivalent” single notch channel performance; i .e., the 

additional channe roots with smaller radii add only fine- 

grain detail to the er or curves. Again, the optimal equali- 

zer is far superis to the Fourier series equalizer in cases 

of severe selective fading (channels 3 and 6). This behavior 

has been borne out by many more example channels which were 

randomly selected; equalizer performance is basically deter- 

mined by the channel root closest to the unit circle, and 

Equation (3-51) may be used to roughly predict the number of 

optimal equalizer taps required for channel inversion. 

These results for mean-square equalization error may be 

regarded as the performance of dispersive channel demodulators 

when there is no noise. Let us now go back to the case of 

noisy channels considered in section 3.1. 

When the additive noise is bandlimited and white, and 

independent of the message it is easy to show that the per- 

formance of either equalizer is given by 

m 
1 lCkl2 

1 1 - Var(&-a) = E 2  + - Gi ‘ k=l (3-45)  

1 

.I 

3 I 
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where i equalization error, TI is the input 

qualizer tap gains. T h i s  per- 

gures 3-5 and 3-6 for single- 

two different observation 

purposes of comparison i s  the 

performance of mal demodulator (Figure 2-7) . 
Stme general ob ations may be made: 

1. 

2 .  

3 .  

4 .  

The  opti 

as well as t timal demodulator when TI 

is large (ise., no post-equalization filtering 

izer performs very nearly 

The Fourier series equalizer is much infer- 

ior to the optimal equalizer if deep fades 

When W e  demodulator is noise-limited (i.e., 

if E *  is much smaller than l/s) increasing the 

observation interval actually degrades per- 

formance if no post-equalization filtering 

is employed, 

For systems with low input SNR, additional 

ng is required to make the per- 

-optimal, as can be seen by 

e case rl = 10 dB. 

The poor performan~e of the equalizers at low input S N R ' s ,  

compared to the timal d~mo~ulator, brings us back to the 

post-equalization filter approximations of Equations (3-7) 
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and ( 3 - 8 ) .  Will a low order filter approximation of the form 

shown in (3-8) si nificantly improve system performance? 

We will consider three cases of approximation of the 

form ( 3 - 8 ) :  

1. The zero h order approximation, 

2 .  The first order approximation, 

3 .  The exact post-equalization filter, 

L -L 

This last case could not be easily implemented, but gives a 

useful assymptotic result; it tells how much degradation in 

performance is due to imperfect channel inversion (equaliza- 

tion) alone. 

The estimation error for the nth order approximate demod- 

ulator may be calculated using the expression 

or by the analogous formulations using z transforms or matri- 

ces. However, before giving the results of such calculations 

it is interesting to consider the optimal demodulator 
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approximation from a discrete data viewpoint;  t h i s  approach 

lends  some theoretical i n s i g h t  i n t o  t h e  na tu re  of t h i s  approx- 

imat ion,  

Equation (3-2) for  the  vector message estimate & - may be 

manipulated i n t o  the  form 

i f  t h e  i n v e r s e  of the  s i n g u l a r  mat r ix  H_ - is i n t e r p r e t e d  as t h e  

pseudo-inverse, or Moore-Penrsse genera l ized  inverse ,  
1 

(3-51) 

Then, i f  t h e  kth column of & is denoted by +k, and the  no i se  

is  assumed t o  be bandlimited and w h i t e ,  t h e  opt imal  estimate 

of the  kth message sample can be w r i t t e n  

where 

and 

(3-52) 

(3-53) 

(3-54) 

'Deutsch, R. , Estimation Theory, P r e n t k e  H a l l ,  Englewood 
C l i f f s ,  New J e r s e y ,  1965  I Ch. 7.  
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c - may be i n t e r p r e t e d  as t he  set of t a p  ga in  c o e f f i c i e n t s  f O K  

t he  optimal t r a n s v e r s a l  equa l i ze r  ( let  17- i n  (3-59) 1 8 and 

t h e  ~ a ~ r i x  

(3-551 

a s  a f i l t e r  analogous t o  t h a t  of Equations (3-6) and (3-8) ,, 

The nth order approximate f i l t e r  would be 

SO t h a t  t h e  nth order approximate 

A T - ak - 2 &r 

The performance of 

* 

(3-64)  is 

J L  

demodulator would be w r i t -  

(3 -57)  

then given by 

(3-58) 

I n  t h i s  de r iva t ion  use is made of t h e  Hermitian symmetry of 

g and &, and of t h e  fact t h a t  they commute. It  is no t  d i f -  

f i c u l t  to show t h a t  t he  performance of t h e  exac t  demodulator 

(3 -521,  i s  given by 
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"" 7 
*$ 

"a ( 3-59) 

Thus t h e  q u a n t i t y ,  

which appears  i n  (3-58) can be i n t e r p r e t e d  as t h e  a d d i t i o n a l  

demodulation error caused by t r u n c a t i n g  t h e  mat r ix  f i l t e r  

approximation. 

of t h e  i n p u t  SNR,  n. 

T h i s  error goes t o  ze ro  as  t h e  2(n+l )  th power 

Now l e t  u s  examine t h e  performance of t h e  va r ious  approx- 

imate demodulators given by Equations (3-46) - (3-48). 
Tables 3-1 t o  3-3 g ive  demodulator performance ( t h e  ou tpu t  

SNR i n  decibels) for va r ious  channel conf iqu ra t ions ,  i n p u t  

S N R ' s  and observa t ion  i n t e r v a l s ;  t h e  message source i s  Markov, 

and t h e  noise  i s  w h i t e .  The columns labeled one through 

seven give t h e  output  S N R ' s  f o r  t h e  fol lowing demodulator 

conf igura t ions :  

1. The opt imal ,  f i n i t e  observa t ion  t i m e  demodu- 

la tor .  

The opt imal  t r a n s v e r s a l  e q u a l i z e r  followed by 

t h e  e x a c t  pos t -equal iza t ion  f i l ter ,  

The optimal t r a n s v e r s a l  equa l i ze r  followed by 

t h e  f i r s t - o r d e r  pos t -equal iza t ion  f i l t e r .  

The opt imal  t r a n s v e r s a l  e q u a l i z e r  a lone.  

2 .  

3. 

4 .  
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T a b l e  3-1. System Performance  for Single-Notch, Band-Edge 
Fading a 

7 1 0  1 0  9.7 9.7 8.4 7.8 9.7 8.4 7.8 
20 1 8 . 1  18.1 18.1 17.8 18.1 18.1 17.8 
30 27.8 27.8 28.8 27.8 27.8 27.8 27.8 
40 37.8 37.8 37.8 37.8 37.8 37.8 37.8 

20 10 9.7 9.7 8.4 7.8 9.7 8.4 7.8 
20 18.1 18.1 18.1 17.8 18.1 18.1 17.8 
30 27.8 27.8 27.8 27.8 27.8 27.8 27.8 
40 37.8 37.8 37.8 37.8 37.8 37.8 37.8 

2 3  1 O  1 0  8.8 8.6 -9.9 2.2 6.2 -15.7 0.2 
20 13.6 13 ,2  12.9 11.6 7.9 7.4 6.9 
30 18.1 18.0 18.0 17.8 8.9 8.9 3.9 
40 19 .5  19.5 19.5 1 9 - 5  9 . 1  9 . 1  9 .1  

20 10 8.8 8.6 -16.6 0.6 8.2 -18.0 0.2 
20 14 .1  13.0 11.1 10.6 11.9 9.8 9.6 
30 20.5 20.4 20.4 20.1 16.4 16.4 1 6 . 4  
40 27.0 27.0 27.0 27.0 18.1 18 .1  18.0 

30 10  8.8 8.6 -18.0 0.3 8.6 -18.2 0.2 
20 1 4 . 1  13.0 10.4 10.3 12.8 10.2 10 .1  
30 20.9 20.9 20.6 20.2 19.8 19.8 19.5 
40 29.9 29.7 29,7 29,7 25.6 25.6 25.6 

44 10  10 8.8 8.4 -11.3 1.7 1.2 -26.8 -4.2 
20 13.0 11.9 12 .1  10 .1  1.0 -0.6 0.0 
30 14.5 1 4 . 3  14.3 1 4 . 1  1.0 0.9 0.8 
40 14.9 14.8 14.8 14.8 0.9 0.9 0.9 

20 10 8.8 8.5 -23.0 -1.2 1.7 -35.9 -6-0 
20 13.7 11.9 7.6 8.4 1.7 -6.2 0.0 
30 16.9 16.2 16.2 15.6 1.8 1.8 1.5 
40 18.6 18.0 18.0 18.0 1.8 1.8 1 .7  

30 10  8.8 8.5 -29.0 -2.9 2.3 -40.4 -7,o 
20 13.7 1 1 - 6  2.0 6.9 2.4 -10.3 0.0 
30 17.9 16.4 16.5 15.5 2.6 2.6 2.3 
40 20.2 19.8 19.8 19.7 2.6 2.6 2.6 
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1 
3 

T a b l e  3-2. System Performance  for S inq le -Notch ,  Center-Band 
F a d i n g  

n System Combination Number 
2 3 4 5 6 - 7 - - - - - 1 - 

D To - (dB) (sed (db) 

7 1 0  10  8 .5  8.5 8.4 7.8 8.5 8.4 7.8 
20 17.9 17.9 17.9 17.8 17.9 17.9 17.8 
30 27.8 2 7 - 8  27.8 27.8 27.8 27.8 27.8 
40 37.8 37.8 37.8 37.8 37.8 37.8 37.8 

20 1 0  8 .5  8.5 8.4 7.8 8 .5  8.4 7.8 
20 17.9 17.9 17.9 17.8 17.9 17.9 17.9 
30 27.8 27.8 27.8 27.8 27.8 27.8 27.8 
40 37.8 37.8 37.8 37.8 37.8 37.8 37.8 

23 10  10  4.6 4.5 2.7 1 .9  3.7 -1.5 0.2 
20 9.5 9.5 9 .5  9.2 7.5 7.5 6.9 
30 11.9 11 ,8  11.8 11.7 8.9 8.9 8.9 
40 1 2 . 1  1 2 . 1  12 .1  1 2 . 1  9 .1  9 . 1  9 .1  

20 1 0  4.9 4.4 -2 .1  0.6 4.2 -3.4 0.2 
20 10.9 10.9 10.9 10.3 10 .3  10 .3  9.6 
30 18 .1  18 .1  18 .1  18 .1  16.3 16 .3  16.2 
40 21.0 21.0 21.0 21.0 18.0 18.0 18.0 

30 10  4.9 4.3 -3.4 0 .3  4 . 3  -3.6 0.2 
20 11.2 10.9 10.9 10 .3  10.8 10.8 10.2 
30 20.0 20.0 20.0 19.9 19.5 19.5 19.5 
40 27.5 27.5 27.5 27.5 25.6 25.6 25.6 

44  10  1 0  4,2 3.6 2.5 0.7 1 . 3  -12,4 -4,2 

30 7.0 6.8 6.8 6.8 0.9 0.9 0.8 
20 6.3 6.2 6.2 5.7 1.2 1.5 0.0 

40 7.0 6.9 6.9 6.9 0.9 0.9 0.9 

20 1 0  4.5 3.6 -7.9 -1.5 1.3 -21.7 -6.0 
20 8.0 6.2 7.6 6 .3  1.9 1.9 0.0 
30 9.6 6.8 9.5 9.4 1 .8  1.8 1.5 
40 10.0 6.9 9.9 9.9 1.8 1.8 1.7 

30 1 0  4.6 3,6 -14.3 -3.0 1.5 -26.3 -7.0 
20 8.8 7.4 7.4 5.9 2.4 1 .3  0.0 
30 11.1 11.1 11,l 10.9 2.6 2.6 2.3 
40 11.9 11.9 11.9 11.9 2.6 2.6 2.6 
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T a b l e  3-3. System Per fo rmance  For  F i v e  Tap Example Channels. 

Channel To 
No. (sec) 

1 10 

2 

3 

4 

20 

1 0  

20 

10 

20 

10  

20 

r) System Combination Number 
2 3 4 5 7 - - - - - (db) 1 - 

1 0  8.5 8.5 6.6 6.0 8.5 6.6 6.0 
20 16.4 16.4 16.4 15.6 16.4 16.4 15.6 
30 26.0 26.0 26.0 26.0 26.0 26.0 26.0 
40 36.0 36.0 36.0 36.0 36.0 36.0 36.0 

1 0  8.5 8.5 6.6 6.0 8.5 6.6 6.0 
20 16.4 16.4 16.4 16.0 16.4 16.4 16.0 
30 26.0 26.0 26.0 26.0 26.0 26.0 26.0 
40 36.0 36.0 36.0 36.0 36.0 36.0 36.0 

10  9.2 9.2 7.7 7 .1  9.2 7.7 7.1 
20 17.4 17.4 17.4 17 .1  17.4 17.4 17.1 
30 27.1 27.3. 27.1 27 .1  27.1 27.1 27 ,b  
40 37.1 37.1 37.1 37.1 37.1 37.1 37.1 

10  9.2 9.2 7.7 7 . 1  9.2 7.7 7 . 1  
20 17.4 17.4 17.4 1 7 . 1  17.4 17.4 17 .1  
30 27.1 27.1 27 .1  27.1 27.1 27.1 27.1 
40 37.1 37.1 37.1 37.1 37.1 37.1 37.1 

10  8.2 8.2 6.2 5.7 7.5 2.4 4 . 1  
20 13.8 13.8 13.8 13.5 11.5 11.5 10.9 
30 16.6 16.6 16 .5  16.5 13.0 13.0 12.9 
40 17.0 17.0 17.0 17.0 13.2 13 .1  13 .1  

10  8.2 8.2 2.7 4.7 7.5 1.1 3.9 
20 14.9 14.7 14.7 14.2 12.6 12.6 12 .1  
30 21.1 21.1 2 1 . 1  21.0 15.7 15.7 15.7 
40 23.2 23.2 23.2 23.2 16 .3  16.3 16 .3  

10  8.0 7.9 7.4 6.4 7.0 6.6 5.6 
20 14.9 14.6 14.6 14.5 11.6 11.6 11.5 
30 18.5 17.9 17.9 17.9 13.0 13.0 13.0 
40 18.9 1 8 . 4  18.4 18.4 13 .2  13.2 13.2 

1 0  8.2 8.0 7.4 6.4 8.0 7.4 6.4 
20 16.5 16.5 16.5 16.3 16.5 16.5 16 .3  
30 26.0 26.0 26.0 26.0 25.9 25.9 25.9 
40 33.4 33.4 33.4 33.4 32.9 32.9 32.9 

“1 

. *  1 
“ 3  
6 

Y 

t ,I 



8 3  

Table 3-3. (Continued) 

channel To 11 System Combination Number 
No. (sec )  (db) 1 - 2 2  - - - - 7 - 
5 10 10 6.6 6.3 -3.9 1.8 6.1 -4.5 1.6 

20 12.2 12.2 12.1 11,4 11.7 11.7 10.9 
30 18.6 18.5 18.5 18.4 17.1 17.1 17.1 
40 20.9 20.8 20.8 20.7 18.7 18.7 18.7 

20 10 6.7 6.2 -4.5 1.6 6.1 -4.6 1.6 
20 12.7 12.5 12.4 11.6 12.2 12.1 11.4 
30 21.5 21.4 21.4 21.3 19.9 19.9 19.9 
40 29,s 29.5 29.5 29.5 23.9 23.9 23.9 

6 10 10 9.2 8.8 8.0 7,2 7.7 2.4 4.8 
20 14.9 14.8 14.8 14,s 11.0 11.0 10.3 
30 17,2 17.2 17.1 17.0 11.7 11.7 11.6 
40 17.7 17.4 17.4 17.4 11.7 11.7 11.7 

20 10 9.3 8.7 3.3 6.0 8.1 -1.7 4,5 
20 16.0 15.7 15.7 15.2 13.1 13.1 12.2 
30 21.1 21.1 21.1 21.0 15.3 15.3 15,2 
40 22.4 22.4 22.4 22.4 15.7 15.7 15.6 
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5. The Fourier series equalizer followed by 

the exact post-equalization filter. 

6 .  The Fourier series equalizer followed by 

the first order post-equalization filter. 

7 .  The Fourier series equalizer alone. 

Careful examination of the data in these tables leads one to 

conclude that a low-order post-equalization filter is not a 

worthwhile addition to the system; improvement in performance 

is obtained only over a limited range of TI, and the resultant 

improvement is slight. Also,  if the equalization is poor 

(small To and deep fading), the performance exhibits a severe 

threshold effect for low 0, and the performance is worse than 

that of the equalizer alone (itself poor) . Consequently, if 
optimal or near-optimal performance is required for low input 

SNR's, it is apparently necessary to use the optimal demodu- 

lating system with all its attendant complexity: simple 

equalizers are not sufficient. 

For high input SNR (11 > 25  dB) it is clear from the - 
tables and also Figures 3-5 and 3-6, that the minimum rnean- 

square transversal equalizer is nearly optimal, and that it 

is distinctly superior to the Fourier series (zero-forcing) 

equalizer. Since this optimal equalizer can be mechanized 

with only a modest increase in hardware as compared to the 

zero-forcing equalizer (see (261 through 12811, it is 

regarded as the most promising compromise between system com- 

plexity and system performance. 
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The observation interval (number of equalizer taps) 

should be chosen so that the equalization error is of the 

same order as the reciprocal of the input S N R  (see Equation 

( 3 - 4 5 ) ) .  Additional observation time will only increase the 

noise output of the system, a reflection of the fact that the 

equalization has converted the channel from a dispersion- 

limited one to an additive-noise-limited one. 

the equalizer output is highly "colored, '' and only sophisti- 

cated filtering (i .e., the optimal demodulator) will improve 

the low S N R  performance. 

In the rest of this research we will consider only the 

The noise at 

two most promising systems. 

1. The optimal demodulator, because it is the 

only system considered which works well for 

all S N R ,  and is of interest of its own 

right. 

2 .  The optimal transversal equalizer, because 

it is much simpler to mechanize than the 

optimal demodulator, and its performance 

approaches that of the optimal demodulator 

for high S N R ,  

3.5 A Summary of Results for Known Dispersive 
Channel Demodulation 

The optimal vector estimator for the message is given by 

Equation (3-2) to be (for white noise) 
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(3-60) 

and i ts  performance given by (2-331, 

t h  An a l t e r n a t i v e  form given by Equation (3-50) permits  t h e  k 

element of & t o  be w r i t t e n  - 

(3-62) 

with error var iance  given by (3-59): 

1 * T * T F @ H * T + + A  - i  

==a= 7 ~ a r ( i i  -a I = 1 - 4 
'a 

E k k  4 -  

where kk is  t h e  kth column of - ka. 

The estimate of the  message obtained us ing  the  optimal 

t r a n s v e r s a l  equa l i ze r  is  t h e  expression (3-62) i n  t h e  l i m i t  

as n+-, i.e. 

(3-64) 

where c - is  t h e  set of equa l i ze r  t a p  gain c o e f f i c i e n t s ,  The 

performance, i n  t h e  presence of no ise ,  of t h i s  equa l i ze r  i s  

given by (3 -451 ,  or by s e t t i n g  n=O i n  (3-58). 
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(3-65) 

I 
* !  

I 

5 

i 
. I  

E ~ ( T * )  is  the  

t h e  f i n i t e  observa t ion  i n t e r v a l  as t h e  no i se  goes t o  ze ro  

( n - . ~ ) .  

t h e  opt imal  message estimator also approaches E (To) as n-. 

, t h e  r e s i d u a l  error due t o  

I t  can be seen  from ( 3 - 6 3 )  t h a t  t h e  performance of 

These equat ions ,  ( 3 - 6 0 )  through (3-65), are t h e  funda- 

mental equat ions  f o r  p r e d i c t i n g  system performance. 

mal demodulator performance as c a l c u l a t e d  us ing  (3-61) 

( 3 - 6 3 )  has t h e  gene ra l  form shown by curve 1 of Figure 3-7. 

As n+= t he  performance approaches 

c ( T o )  . 
t h e  form shown by curve 2 of Figure 3 - 9 .  

co inc ides  w i t h  t h a t  of t h e  opt imal  demodulator for  l a r g e  n , 
b u t  f o r  noisy systems t h e  performance drops  o f f  l i n e a r l y  ( i n  

dB) as i n d i c a  ed by the  second t e r m  of (3-65) e 

The optk-  

or 

e quaxi za t ion  error 8 

The optimal equa l i ze r  performance, (3-65) , i s  of 

I ts  performance 

The h e i g h t  of t h e  e q u a l i z a t i o n  error assymptote, curve 3, 

may be raised by inc reas ing  t h e  obse 

To  is made s u f f i c i e n t l y  b a r  

assymptote of t h e  demodulator performance can be made t o  

occur a t  va lues  of r\ o u t s i d e  t h e  range of i n t e r e s t  for des ign  

purposes, and t h e  system w i l l  be e f f e c t i v e l y  noise- l imited 

rather than l imi ted  by r e s i d u a l  d i s p e r s i o n .  

d i t i o n ,  t h e  obse 

a t i o n  i n t e r v a l  TO" If 

Under t h i s  con- 
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and w e  may u s e  t h e  r e s u l t  f o  

given by (3-24) 

optimal eksflodulator performance 

and r e w r i t t e n  here us ing  z transforms: 

(3-66) 

This is shown as curve 

t h e  same as f o r  t h e  f i n i t e  To optimal  demodulator a t  l o w  SNR,  

b u t  cont inues  t o  depend l i n e a r l y  upon TI f o r  l a r g e  0, 3 conse- 

quence of t h e  i n f i n i t e  observa t ion  t i m e .  

r e q u i r e s  only  modest e f f o r t  t o  eva lua te  (compared t o  (3-60) 

through (3-65) ) and can o f t e n  be performed a n a l y t i c a l l y  e 

i n  F igure  3-7. The performance is 

Note t h a t  (3-66) 

Note also from Figure 3-7 t h a t  an opt imal  e q u a l i z e r  w i t h  

a s u f f i c i e n t l y  l a r g e  obse 

curve of t h e  same s l o p e  and i n t e r c e p t  as t h e  Linear p a r t  of 

curve 4 ,  so t h a t  t h e  opt imal  e q u a l i z e r  has i t s  performance 

under noise- l imi ted  cond i t ions  given by t h e  assymptot ic  form 

of (3-66) p i .e.,  

The cons tan t  
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is just the intrinsic loss in performance of a dispersive 

channel relative to a non-dispersive channel (see curve 5 of 

Figure 3 - 7 )  which was discussed in Section 2 .5 ,  

Examination of the assymptotic behavior shown in Figure 

3-7 is reminiscent of the familiar Bode diagram' used in 

linear control theory to make rapid frequency response calcu- 

lations, and suggests the following approximations for demod- 

ulator performance. The expression 

could be used for optimal demodulator performance calcula- 

tions, and the expression 

for the optimal transversal equalizer. 

These expressions are excellent approximations to the 

exact performance equations, but are much easier to compute 

since the effect of the finite observation interval is iso- 

lated from the effects due to noise. The integrals of ( 3 - 6 8 )  

and (3-69) may be evaluated using residue calculus, and t h e  

equalization error may be approximated using the method of an 

"equivalent" single-notch channel discussed a t  the end of 

Section 3 . 3 .  That is, we factor a high-order channel into a 

product of first order (single-notch) channels and compute 

$mer, J. L., and P. M. Schultheiss, Introduction to 
the Design of Servomechanisms, Wiley, N. Y., 1958 , Ch. 6 .  
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x 4 

the equalization error fo r  that single-notch channel with its 

root closest to the unit circle, using Equations (C-24) and 

(C-26) of Appendix C. 

This technique requires only modest computations and 

permits rapid design calculations of easonable accuracy 
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NEL MEASUREMENT 

-1 Int roduct ion  

I n  t h i s  chapter techniques for t h e  measurement of d is -  

pe r s ive  channels w i l l  be discussed.  There are t w o  b a s i c a l l y  

d i f f e r e n t  approaches t o  t h e  problem of channel measurement: 

systems which measure the  channel using t h e  information- 

bear ing s i g n a l  alone: and systems which use  a s p e c i a l l y  

designed re ference  s i  a1 t o  measure t h e  channel,  I t  w i l l  be 

shown tha t  t h e  l a t t e r  method leads t o  fa r  simpler e s t ima t ing  

systems than does t h e  former, and t h a t  t h e  d i f f e r e n c e  i n  per- 

formance between the  t w o  i s  n o t  very great. Optimal t r a n s -  

mitted re ference  systems w i l l  be derived and analyzed, includ-  

ing  t h e  re ference  s i g n a l  des ign ,  and some e x c e l l e n t  suboptimal 

systems w i l l  be discussed as w e l l .  

The r e s u l t s  of t h i s  s e c t i o n  have been carried o u t  using 

t h e  sampled-data formulation of t he  d i s p e r s i v e  channel demod- 

u l a t i o n  problem as discussed i n  Sec t ion  2.4.  The d e r i v a t i o n s  

are more s t ra ight forward  and more e a s i l y  i n t e r p r e t e d  us ing  

t h i s  formulation, and t h e  r e s u l t a n t  es t imat ion  scheme would 

probably have t o  be implemented on a d i g i t a l  computer anyway. 

f x 9 
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.i, 

? 
I 

The observed channel output can be written in the form 

= H _ a + N = & h + N  - (4-1) - - -  y, - -  

where E ,  a, and - a are as defined in Section 2 . 4 6  and 

h =  

C 
- -  ~:: hn 

A _ =  - 

* .  e al 
C 

an 

anc+l . . a2 

a . ..aT 
*c 

* (4 -2)  

It is desired to estimate both the unknown vectors a - 
and and h - on the basis of the observed channel output, Y_, 

prior knowledge of the statistics of the message a. - 
be assumed that h - is an unknown, but non-random, parameter 
vector, so that no prior knowledge of h is available. The 

method of estimation will be to find the joint maximum Ilk-- 

lihood estimate of the message and the channel state, ire.# 

It will 

maximize the probability density function p(a,x/h) - - .' If the 

noise is assumed to be bandlimited and white, with variance 

then this density function can be expressed in the follow- aN @ 

ing forms using (4-1) and (4-2). 

'The joint probability density of the message a - and 
observation y. conditioned on a known channelo h. - 
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K(yl is a cons t an t  n o t  e x p l i c i t l y  dependent upon a - or h. - 
optimizat ion i s  carried o u t  by s e t t i n g  the  gradient  of t h e  

logarithm of (4-3) equal  t o  zero,' leading t o  t h e  following 

s e t  of simultaneous equat ions for the  message and channel 

estimates, which are ind ica t ed  by circumflex. 

The 

( 4 - 5 1  
L A  

T h i s  i s  a set of nonl inear  equat ions,  so there is  no assur -  

ance t h a t  a s o l u t i o n  e x i s t s ,  or i s  unique, bu t ,  even assurnin? 

such a s o l u t i o n  could be found t h e  ind ica ted  es t imat ion  pro- 

cedure is a very complicated one indeed. It  r e q u i r e s  such 

ex tens ive  data storage and processing t h a t  a d i g i t a l  computer 

would s u r e l y  be requi red  t o  perform t h e  es t imat ion .  An i ter-  

a t i v e  s o l u t i o n  seems t h e  only p r a c t i c a l  method to  so lve  such 

a system, so real-time data processing would r e q u i r e  an  

extremely f a s t  computer i f  the message bandwidth (sampling 

'Deutsch, R., Estimation Theory, P ren t i ce  Hal l ,  Englewood 
Cliffs, New Jersey ,  1965 , Ch.  3 ,  
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B 

rate) is  large. This  r u l e s  t h e  technique o u t  f o r  a l l  b u t  the  

largest ,  most s p e c i a l i z e d  co n i c a t i o n s  te rmina l  app l i ca -  

t i o n s .  

The primary reason fo cons ider ing  t h i s  channel measure- 

ment technique a t  a l l  i s  t h a  it leads n a t u r a l l y  t o  cons ider -  

a t i o n s  of t h e  C r a m e r -  bound t331 on t h e  va r i ance  of 

unbiased estimators of t h e  requi red  ararneters, Th i s  bound 

is  use fu l  for comparing w i t h  t h e  performance of t ransrni t ted-  

r e fe rence  channel asurement systems. I t  can be shown' t h a t  

t h e  error covariance of any unbiased estimate of t h e  

parameter vector, 

PT 

must s a t i s f y  t h e  matri i n e q u a l i t y ,  

where t h e  i n e q u a l i t y  is  aken i n  t h e  sense  t h a t  t h e  mat r ix  on 

t h e  l e f t  side be p o s i t i v e  semi-def in i te ,  and I _- is  t h e  i n f o r -  

mation matr ix  def ined  below. T h i s  is  p a r t i c u l a r  impl ies  t h a t  2 

c a t i o n s ,  Wiley, N e  
stated i n  t h i s  r e f  
estimates, I t  is  

d e n s i t y  of the  message as  w e l l  as t h e  noise . )  

2Hoffman and Kunze, , P r e n t i c e  Hall, 
Englewood C l i f f s ,  Mew Jer 252.  
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a t  is, t h e  d i  n a l  elements of - give a lower bound on 

t h e  error varia stimate of these para- 

8 &, is def ined  as follows. 

l-" 7 

1 It is convenient o rewrite this us ing  g r a d i e n t  no ta t ion .  

This can be expressed i n  t h e  p a r t i t i o n e d  form below, 

may be used t o  show t h a t  

(4-12) 

'See Deutsch, R., Es imation Theory, P r e n t i c e  H a l l  , 
Englewood C l i f f s ,  New Jersey, 1965, Ch.  3. 
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The off-diagonal  p a r t i t i o n s  of (4-10)  have zero  expected 

value.  T h i s  can be seen f r o m  (4-11)  and (4-12)  s i n c e  the  

random vec to r s  - a and y - appear l i n e a r l y ,  and have zero mean. 

The diagonal  p a r t i t i  -10) a r e  go t t en  by t a k i n g  t h e  

second g rad ien t s  of ( 4 - l l )  and (4-12) e 

Thus the information matr ix  can be expressed i n  t h e  form 

below. 

.- 1 

Examination of t h e  d e f i n i t i o n  of t h e  matr ix  A, - Equation (4-21, 

i n d i c a t e s  t h a t  

where To is  t h e  number of obse 

(observat ion t i m e )  and ==a Q' is t h e  normalized covariance matr ix  
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n n = ~ i m e ~ s i o n a l  vec tor  of message samples. I f  t he  r a t i o  

n=Ua/aN is i n t e r p r e t e d  as the  i n p u t  S N R ,  then,  by (4-61,  - 

0 
P 1 1 - @  rlTo =a 

( 4  -16) 

I f  t h e  upper-diagonal p a r t i t i o n  of (4-16) ( the  message 

error-covariance) is  compared w i t h  Equation (2-33), it can be 

seen t h a t  t h e  lower bound on t h e  error of t h e  message por t ion  

of t h e  j o i n t  es t imat ion  scheme is  equal  t o  the performance of 

t h e  optimal message estimator f o r  a known channel.  I t  would, 

however, be impossible for the  j o i n t  estimator t o  achieve t h i s  

bound w i t h  a f i n i t e  observat ion i n t e r v a l  s i n c e  t h e  channel 

i s  not  known p e r f e c t l y ,  

The bound on t h e  channel. measurement, 

(4-17) 

is more realist ic i n  t h a t  t h e  error goes down i n  inverse  pro- 

po r t ion  t o  t h e  length  of the  measurement i n t e r v a l  and the  

inpu t  SNR.  If, i n  Equation (4-5)  fo r  the  channel estimate, 
6. 

it were assumed t h a t  t he  message estimate, 24, - w e r e  p e r f e c t ,  

t hen  it can be shown t h a t  (4-5) achieves t h e  lower bound 

(4-17). I n  any non-ideal j o i n t  channel and message estimate 

there w i l l  always be some r e s i d u a l  message es t imat ion  error, 

so t h e  channel estimates w i l l  n o t  be t h i s  good, However, 
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some crude,  approximate c a l c u l a t i o n s  have ind ica t ed  t h a t  t h e  

bound i s  u n l i k e l y  t o  be more than an order of magnitude o p t i -  

m i s t i c ,  and could q u i t e  conceivably be wi th in  a f e w  decibels 

of a c t u a l  performance i f  t h e  i n p u t  SNR is  high.  

The fol lowing observa t ions  concerning channel estima- 

t i o n  us ing  t h e  information-bearing s i g n a l  are i n  order. 

1. 

2 .  

3 ,  

4. 

This  type  of e s t ima t ion  i s  desirable i n  t h a t  

a l l  t r a n s m i t t e r  power goes i n t o  information 

t ransmiss ion  e 

J o i n t  e s t ima t ion  of channel and message i s  

complicated. The estimate is  nonl inear ,  

r e q u i r e s  an i t e r a t i v e  or s e q u e n t i a l  s o l u t i o n ,  

and could n o t  be done i n  real  t i m e  on large 

bandwidth channels  w i t h  e x i s t i n g  computer 

hardware e 

The performance of t h i s  scheme is somewhat 

i n  doubt. There is  no assurance t h a t  a 

s o l u t i o n  w i l l  e x i s t ,  or t h a t  a s e q u e n t i a l  

procedure would converge t o  t h e  s o l u t i o n  i f  

it d i d  e x i s t .  

The drawbacks of such a scheme i n d i c a t e  t h a t  

an i n v e s t i g a t i o n  of s impler ,  t ransmi t ted-  

r e fe rence  techniques is merited, 

4 .3  Channel Est imat ion Using Transmitted Reference S i g n a l s  

The phys ica l  system requ i r ed  t o  measure t h e  s t a t e  of an  

unknown, d i s p e r s i v e  channel may be g r e a t l y  s impl i f i ed  i f  a 
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re ference  s i g n a l ,  known i n  advance a t  t h e  r e c e i v e r p  is  t r a n s -  

e l  for t h e  e p r e s s  purpose of making t h i s  

s i  would be multiplexed w i t h  t h e  

ng s i g n a l ,  and channel measurements made a t  

n s i s t e n t  w i t h  t h e  t i m e  v a r i a t i o n  of t h e  

channel,  One m e  hod of ~ e ~ ~ o r m i n g  t h i s  mult iplexing is  by 

short  surement s i g n a l  could be per iodic-  

a l l y  a l t e r n a t e d  w i t h  he message t o  keep t h e  r ece ive r  i n f  

of t h e  t r u e  channe 

frequency d iv i s ion ;  sin @-sideband techniques could be used 

t o  t ransmi t  t h e  r e fe rence  s i g n a l  on one sideband and t h e  mes- 

sage on t h e  other: 

a l t e r n a t e d .  

l a t t e r  system witho t i n t e r r u p t i n g  t h e  information f l o w ,  

(With a longer  t i m e  i n t e  

thod of mult iplexing is 

t h e  sidebands used would be p e r i o d i c a l l y  

Longer meas rements would be possible w i t h  t h e  

a1 it is  poss ib l e  t o  achieve l a r g e r  

s i g n a l  s i g n a l  for  a given s i g n a l  power.) 

he mult iplexing schemes described it is  

poss ib l e  t o  independently isolate the  message and r e fe rence  

s i g n a l s  a t  the  r e c e i v e r ,  regardless of t h e  channel state,  

The channel output  due t o  the  re ference  s i g n a l  input  can  then 

be w r i t t e n  

where s ( t )  is  a known (poss ib ly  complex) r e fe rence  waveform. 

When the tapped delay l i n e  channel model is  assumed, (4-18) 

can be w r i t t e n  i n  t h e  following, more convenient form, 

J 
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4 

where 

h =  - I - s ( t )  = (4-20) 

T h e  maximum l ike l ihood  technique for  e s t ima t ing  a f i n i t e  

set of unknown parameters i s  w e l l  known' t o  be equ iva len t  t o  

the  minimization of t h e  f u n c t i o n a l  

{ 4-21)  

Equation (4-21)  assumes t h a t  the  channel ou tput  i s  observed 

over t h e  t i m e  i n t e r v a l  0 - e t e Tmt and t h a t  t h e  addi-t ive 

noise  i s  e s s e n t i a l l y  whi te .  

t i m e ,  A necessary cond i t ion  (it is also s u f f i c i e n t  s i n c e  

H e r e  Tm denotes  t h e  measurement 

convex) for t h e  minimization of L r e q u i r e s  t h a t  

l H e l S ~ r O H I F  
Pergamon Press, 
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T h i s  e ~ u a t ~ o n  y be solved for h t o  provide t h e  fol lowing - 

t i o n s :  

ies either of t h e  fo l lowing  condi- 

1. I f  s ( t )  i s  pe r iod ic ,  then Tm is  a 

of i ts  p e r i  

I f  s ( t )  is  ape r iod ic ,  w i t h  dura t ion  Ts, 

then Tm - > Ts + Tc, where Tc is  t h e  channel 

de lay  spread. (See Sec t ion  2.1) 

2. 

Then the  fol lowing i d e n t i f i c a t i o n  is poss ib le .  

Tm 
g*(t) s T ( t ) d t  = E R - s = = s  

0 

(4-24)  

3 
denotes t h e  total  s i g n a l  energy, and is t h e  (ncxr.c) 

mat r ix  of t i m e  samples of t h e  normalized s i g n a l  au tocorre la -  

t i o n  func t ion .  That  is, 

where 

(4-25) 
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The opt imal  channel estimator then  has t h e  i n t e r p r e t a t i o n  of 

a system which crosscorrelates t h e  observed s i g n a l  with vari-  

ous delayed r e p l i c a s  of t h e  r e fe rence  s i g n a l ,  and then  per- 

forms a known l i n e a r  combining ope ra t ion  on t h e  correlator 

ou tpu t s  t o  form t h e  channel tap-gain estimates. T h i s  i s  a 

much s impler  system than  

mator, and may be e a s i l y  implemented w i t h  analog components. 

The performance of t h e  channel estimator is  of great 

i n t e r e s t .  Note t h a t  (4-23) can be r e w r i t t e n  i n  t he  form, 

14-26)  

I t  then  i s  easy t o  see t h a t  t h e  estimator i s  unbiased, 

E[&] = h - , x 1-27) 

and t h a t  

(4 -28)  
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N o t e  t h a t  t h e  m e  n t  error decreases as the  s i g n a l  

o-noise power ra t io  ( m e  surement SNR) i n c r e a s e s ,  and 

that t h i s  error depends upon t h e  choice of t h e  r e fe rence  s ig-  

n a l  through the  c o r r e l a t i o n  mat r ix  &, given by Equation 

(4-25)  * T h i s  dependence upon t h e  r e fe rence  s i g n a l  leads 

n a t u r a l l y  t o  t h e  inves  i g a t i o n  of t h e  design of these s i g n a l s  

t o  minimize t h e  measurement error. 

Equation (4-27) shows t h a t ,  f o r  a given s i g n a l  energy, 

the measurement error covariance depends upon t h e  reference 

s i g n a l  only through t h e  s i g n a l  a u t o c o r r e l a t i o n  func t ion .  

under the assumed no 

(4 -241 ,  t h e  d iagonal  elements of & must be un i ty .  

s i n c e  E, i s  t h e  c o r r e l a t i o n  mat r ix  of a phys ica l  s i g n a l  w i t h  

p o s i t i v e  power spectrum, it must be a positive semide f in i t e  

matrix.' 

l i z a t i o n  condi t ion  on &, Equation 

A l s o ,  

I t  may thus  be factored2 i n  t h e  fol lowing way, 

(4-29) 

where t h e  "square root'' mat r ix ,  Rs, 4 i s  Hermitian and p o s i t i v e  

semide f in i t e .  

f a c t o r i z a t i o n  (4-29) , t he  s i g n a l  op t imiza t ion  problem is 

With the  assumed normalizat ion,  and with the 

'papaulis , 
Processes M c G K ~  

*Riesz, Sz .-Nagy, Funct ional  Analysis ,  Ungar , New York, 
1955, p. 265.  
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t i c a l l y  equiva len t  t o  t h e  theorem of Rao’ which states 

t h a t  

where the  e q u a l i t y  holds  

R = I  ; - 5 =  

I 

i f  

e 

(4-30) 

(4-31) 

This  impl ies  t h a t  t h e  measurement error var iance  i s  minimized 

by choosing 33 as i n  Equation ( -31): and, under t h i s  condi- 

t i o n ,  t h e  measurement errors f o r  d i f f e r e n t  tap-gains  are 
-S 

uncorre la ted .  That is, 

2 

Cov(h-h) = - uN I - -  
E, -- 

(4-32)  

The op t ima l i ty  condi t ion  on t h e  re ference  s i g n a l  t hus  

reduces t o  t h e  fo l lowing  r e s t r i c t i o n  on i t s  normalized au to-  

c o r r e l a t i o n  func t ion ,  p s ( ~ )  . 

(4-33) 

For pu l se  t r a i n  s i g n a l s  of u n i t  width t h i s  means t h a t  s ( t )  

must have zero  au tocor re l a t ion  o u t  to  a value  of de l ay  equal  

t o  t h e  channel de lay  spread,  Tc - - nc -1, and i s  a r b i t r a r y  

beyond t h a t  po in t .  This  i s  i l l u s t r a t e d  i n  F iqure  4-1. 

’Rao, Linear  S t a t i s t i ca l  Inference  and i t s  Appl ica t ions ,  
Wiley, New York, 1965, p ,  194, 
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-1. Autocorrelat ion Function of Optimal Reference 
Signal .  

For s i g n a l s  which s a t i s f y  (4-31), t h e  l i n e a r  combining 

opera t ion  i n  t h e  channel e s t ima to r ,  (4 -231,  is  no longer 

requi red ,  so t h e  e s t ima t ing  system reduces t o  a simple bank 

of crosscorrelators, as shown i n  Figure 4-2.  

4 .5  Design of Reference S igna l s  

Condition (4-33)  f o r  the optimal r e fe rence  s i g n a l  

de f ines  c l a s s e s  of s i g n a l s  rather than the  s i g n a l s  themselves. 

There i s  a consequent freedom of choice i n  p ick ing  t h e  r e f e r -  

ence s i g n a l ,  and t h i s  freedom may be used to  s a t i s f y  addi- 

t i o n a l  c o n s t r a i n t s  imposed by p r a c t i c a l  systems. There are 

t w o  broad classes of r e fe rence  s i g n a l s  which can be consid- 

ered : 

1. Aperiodic,  "one-shot" s i g n a l s  are u s e f u l  for 

t ime-divis ion mult iplexing of t h e  message 

and re ference .  

2 .  Periodic S igna l s  are convenient when long, 

continuous measurements of t h e  channel s ta te  
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FIGURE 4- EMENT SYSTEM USING 
ITTED - REFERENCE 
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are possible, as in the case of the frequency- 

division multi lexing discussed in Section 4-3.  

In either of these cases it is convenient to use pulse-train 

signals for reference signals. The nominal signal bandwidth 

is easily controlled by the ~uration of an individual pulse 

in the train of pulses. (One second duration using the time- 

frequency normalization assumed in this research.) 

pulse signals are easier to s ore, generate, and synchronize 

than more general waveforms; only a finite set of numbers are 

required to describe the signal. 

the discussion to follow that the reference signals are real .  

Also,  

It will also be assumed in 

Real signals are a logical choice since the reference signal 

would normally be generated at baseband, where the representa- 

tion must - be real. 
where the baseband representation has an imaginary part which 

An exception would be the case of SSB, 

is the Hilbert transform of the real part. However, it is 

well known' that the autocorrelation function of the Hilbert 

transform of a signal equals the autocorrelation function of 

the signal itself, so the SSB version of a signal will be 

optimal if and only if its real part is optimal. 

Aperiodic Signals 

1. The simplest form of optimal reference signal 

is a single pulse (bandlimited impulse) with 

autocorrelation function of the form shown in 

'Schwartz, Bennett, Stein, Communication Systems and 
Techniques, McGraw-Hill, New York, 1966 I P a  3 4 .  
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Figure 4-3, This  s i g n a l  i s  disadvantageous 

because it has l o w  energy f o r  a given peak 

power and measurement i n t e r v a l ,  Since,  by 

(4-271, t h e  measurement error is inve r se ly  

propor t iona l  t o  t h e  s i g n a l  energy contained 

i n  t h e  measurement i n t e r v a l ,  and s i n c e  t r a n s -  

mitters a r e  normally l imi ted  i n  peak power, t h i s  

i s  a s e r i o u s  drawback. 

imum a v a i l a b l e  peak power, then the  t o t a l  

I f  Ps denotes t h e  max- 

energy is  given by 

Es = ps e (4 -34)  

A better class of optima, s i g n a l s  is  t h e  set 

of "impulse equiva len t  pu lse  t r a i n s ,  '' o r  

Huffman codes [ 4 7 ] .  These a r e  amplitude m o d -  

u l a t e d  pulse  t r a i n s  w i t h  au tocor re l a t ion  

func t ions  as shown i n  Figure 4 - 4 .  I f ,  for a 

given channel de lay  spread, t h e  length  of a 

Huffman code is  a t  l e a s t  one second longer,  

then these codes are optimal.  Huffman codes 

up t o  length  1 4  have been inves t iga t ed  i n  

t h i s  research t o  determine t h e i r  energy dis t r i -  

but ion,  and it has been found t h a t  average-to- 

peak power ra t ios  on t h e  order of 0.40 t o  0.55 

can be achieved. The achievable  r a t i o  tends 

downward as the  codes g e t  longer.  For these  
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FIGURE 4- 4. AU F F ~ A N  CODE 

FIGURE 4-5. FUNCTION OF BARKER CODE 

FIGURE 4- 6. AUTO~ORRELA~ION FUNCTION OF GE 
KER CODE 
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s i g n a l s  t h e  s i g n a l  energy a v a i l a b l e  wi th  peak 

power Ps is 

(4-35) 

where Ts is t h e  s i g n a l  d u r a t i o n  and K is  t h e  

average-to-peak power ra t io .  Thus, with a 

modest i nc rease  i n  t h e  measurement t i m e ,  much 

lower measurement errors are p o s s i b l e  than  

wi th  s i n g l e  impulses. 

3. A s i g n a l  c lass  which i s  suboptimal, b u t  very 

good, is  t h e  set of Barker codes f481[491. 

These are biphase (+l) - , constant-envelope 

s i g n a l s  with a u t o c o r r e l a t i o n s  shown i n  Figure 

4-5, These codes e x i s t  on ly  for c e r t a i n  

l eng ths  ( c  - 1 3  and odd),  b u t  t h e  i d e a  w i l l  be 

genera l ized  t o  longer  codes i n  t h e  next  para-  

graph. The f a c t  t h a t  t h e  out-of-phase corre- 

l a t i o n  of these  s i g n a l s  i s  no t  zero causes  

a degrada t ion  i n  t h e  measurement error, (4-27)  

b u t  t h i s  loss is  s l i g h t .  & has been  computed 

f o r  a l l  s i g n a l s  w i th  t h e  Barker proper ty  up 

t o  l eng th  13,  and f o r  a l l  channel de l ay  spreads ,  

The w o r s t  case of degra- 

-1  

such t h a t  Tc - e Ts. 
TC 

d a t i o n  i n  measurement va r i ance  occurred when 

Tc = 5 and Ts = 5; a d iagna l  element of g1 - 

with  va lue  1.0714 occurred, corresponding t o  



112  

a 0.3 d B  loss i n  performance compared t o  the  

m, T h i s  i s  c l e a r l y  a n e g l i g i b l e  effect  

when t h e  a ~ e r a g e - t o - ~ a k  power ra t io  of u n i t y  

for these s i g n a l s  is considered. That  is ,  

Es L Ts Ps 

Thus, f o r  a given s ignal  du ra t ion ,  Ts, and a 

peak-power l i m i t a t i o n ,  Ps, t h e  suboptimal 

Barker code performs on the  order of 3 dB 

better than  t h e  "optimal" Huffman codes, 

4 .  The f a c t  t h a t  t h e  optimal au tocor re l a t ion  

func t ion  is  restricted only for de lays  up t a  

t h e  channel de lay  spread, Tc, allows t h e  

Barker proper ty  t o  be extended t o  longer 

codes. That is ,  w e  can attempt t o  f i n d  

bipolar binary sequences w i t h  t h e  autocorre-  

l a t i o n  proper ty  shown i n  F igu re  4-6.  These 

would be "equivalent  Barker codes" for t h e  

purpose of channel measurement. Such codes 

do indeed e x i s t ,  and can even be generated 

by s h i f t  registers i f  PN sequences ( 4 4 1  are 

used i n  ape r iod ic  fashion as t h e  code words. 

Appendix D g ives  a l i s t i n g  of s u i t a b l e  c y c l i c  

permutations of PN sequences up t o  l e n g t  83,  

toge ther  w i t h  t h e i r  aper iodic  au tocorrela t i o n  

func t ions .  I t  seems reasonable t o  assume t h a t  

(4 -36 )  



1. 

113 

a more gene ra l  class e x i s t s  f o r  a r b i t r a r y  

code l eng ths .  

Periodic Reference S i q n a l s  

Tompkins [ S O ]  has inves t igd ted  t h e  ex i s t ence  

of p e r i o d i c  t e r n a r y  sequences (+l, 0 ,  -1) up 

t o  l eng th  26 which have zero  out-of-phase cor- 

r e l a t i o n ,  a s  i n  Figure 4 - 4 .  These codes 

w e r e  found t o  have many zeros ,  r e s u l t i n g  i n  

poor average-to-peak power r a t i o s .  They are 

consequently unsui ted  f o r  channel measurement. 

However, h i s  i n v e s t i g a t i o n  d id  show t h a t  

t h e r e  are no b ina ry  sequences w i t h  l eng ths  

between 4 and 26 whose periodic au tocor re l a -  

t i o n  func t ions  are of t h e  form of F igure  4-7 ,  

One i s  thus  led t o  remove pa r t  of t h e  au tocor-  

r e l a t i o n  r e s t r i c t i o n  and i n v e s t i g a t e  t h e  

ex i s t ence  of "almost uncorre la ted"  periodic 

b inary  sequences w i t h  t h e  proper ty  shown i n  

Figure 4-8. T h i s  s i g n a l  class has  a s i n g l e  

out-of-phase peak i n  i t s  a u t o c o r r e l a t i o n  func- 

t i o n ,  occu r r ing  a t  one-half t h e  per iod ,  and 

i t s  h e i g h t  w a s  found t o  be 4/Ts. 

a r y  logical cons ide ra t ions  show t h a t  any 

p e r i o d i c  b inary  sequence which has  zero  corre- 

l a t i o n  a t  u n i t  de l ay  must be an i n t e g r a l  mul- 

t i p l e  of 4 i n  length .  An exhaus t ive  search 

Some elernent- 
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FIG 

FIGURE 4- 8. 

FIGURE 4-9. 
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f o r  such sequences w a s  carried o u t  f o r  

l eng ths  of , 8 ,  and 1 2 ,  and they  w e r e  found 

is t .  Table 4-1 g ives  one example of 

Table 4-1. L i s t i n g  of A l m o s t  Uncorrelated Pe r iod ic  Sequences. 

Code Length Sequence 

4 +1 +1 +1 -1 

8 +1 -1 4-1 +1 +1 +1 -1 -1 

+1 -1 +1 -1 +1 +1 -1 -1 +1 +1 +1 +1 12 

such sequences f o r  each of t h e  l eng ths  inves- 

t i g a t e d .  (Any c y c l i c  permutation or t i m e  

r e v e r s a l  of these  examples would a lso be i n  

t h e  class.) The sea rch  f o r  these sequences 

w a s  n o t  c a r r i e d  o u t  for  longer codes because 

t h e  exhaus t ive  search  i s  very  was tefu l  of 

computer t i m e ,  and because it w a s  found t h a t  

PN sequences perform n e a r l y  as  w e l l  f o r  chan- 

n e l  measurements. 

2 .  PN sequences [ 4  1 have a u t o c o r r e l a t i o n  func- 

t i o n s  of t h e  form shown i n  F iqure  4-9. These 

are no t  opt imal  s i g n a l s ,  b u t  t h e i r  out-of- 

phase c o r r e l a t i o n  i s  q u i t e  small i f  t h e  

sequence i s  long. The degrada t ion  due t o  t h e  

nonopt imali ty  of t h e  s i g n a l s  can be computed 

a n a l y t i c a l l y  us ing  Rao's r e s u l t .  1 

'Rao, Linear  S t a t i s t i c a l  Inference  and i t s  Appl ica t ions ,  
Wiley, N e w  York, 1965 t P. 5 4 .  
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(4-37) 

Ts is t h e  s i  d Tc is  t h e  channel 

read. T h i s  expression can be seen t o  

> 1. Thus r a p i d l y  approach u n i t y  for Ts > >  Tc - 
PN sequences d f f e r  neg l ig ib ly  i n  performance 

1 s i g n a l s  i s  the measurement per iod 

is  much longer than t h e  channel delay spread. 

The ease  of generat ion of these s i g n a l s ,  

toge ther  w i t h  t h e i r  near-optimal performance, 

makes them the  most l i k e l y  candidates  for 

re ference  s i g n a l s  i n  any p r a c t i c a l  communica- 

t i o n  system. 

Both the  per iodic  s i g n a l  classes discussed have cons tan t  

envelopes,  so t h e i r  t o t a l  energy i s  j u s t  

E, = Tm * Ps . (4-38) 

Tm denotes  the  to ta l  measurement t i m e ,  

s i g n a l  period.)  

for measurement t i m e  and simultaneously keep the  measurement 

error f ixed .  Since,  i n  a frequency-divis ion mult iplexing 

scheme, t h e  only l i m i t a t i o n  o measurement t i m e  is t h e  rate 

of channel t i m e  v a r i a t i o n  ( t h e  information f low is  cont inu-  

ous), it is possible t h a t  only a n e g l i g i b l e  amount of 

( A  mult ip le  of t he  

It is thus  possible t o  trade s i g n a l  power 

l i  Y J 
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t r a n s m i t t e  

case i n  t h e  

power need be devoted t o  channel measurement i f  

is  slowly varying.  T h i s  w i l l  be shown t o  be t h e  

nex t  chap te r .  

4 .6  Summary 

p t e r  t h e  ge era1 problem of channel measure- 

vestigated. I t  w a s  shown t h a t  channel es t i -  

mators which make use of on ly  t h e  information-bearing s i g n a l  

r e q u i r e  an  e l y  complex, imprac t i ca l  phys i ca l  mechan- 

i z a t i o n ,  This  technique does however l ead  to  t h e  inves t iga -  

t i o n  of lower bounds on t h e  var iance  of any channel  estima- 

t i o n  scheme, f o r  f i  ed t r ansmi t t ed  power. 

G r e a t  s i m p l i f i c a t i o n s  i n  t h e  measurement system can be 

obtained i f  a known re fe rence  s i g n a l  i s  t r ansmi t t ed  f o r  t h e  

express  purpose of measuring t h e  channel.  

mate of channel s ta te  for  systems of t h i s  type  w a s  der ived  

and analyzed,  and a c r i t e r i o n  f o r  t h e  j o i n t  o p t i m a l i t y  of 

both t h e  channel es t i  ator and r e fe rence  s i g n a l  w a s  found. 

S igna l s  opt imal  w i th  r e s p e c t  t o  t h i s  c r i t e r i o n  were found, 

and they  w e  

The opt imal  es t i -  

ed on t h e  b a s i s  of f i x e d  peak t r a n s m i t t e r  

s i g n a l s  were also considered,  and t h e i r  

performance analyzed. 

These inves  i g a t i o n s  lead t o  t h e  conclusion t h a t  t h e  

channel measurement system which b e s t  combines performance 

wi th  s i m p l i c i t y  is, i n  a l l  p r o b a b i l i t y ,  a f requency-divis ion 

mult iplexed,  t ansmit ted-reference system which used p e r i o d i c  

PN sequences f o r  e f e rence  s i g n a l s .  
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5 : DEMODULATO~ PERFOR CE FOR UNKNOWN 

DISPERSIVE CHANNELS 

The  performance of adapt ive  demodulators using t r a n s -  , 

mit ted  r e fe rence  cha n e l  measurements is  considered. Exact 

equat ions for t h e  ove ll performance of the  communication 

systems are developed, and they are evaluated numerically 

for s e v e r a l  examples of i n t e r e s t ,  A study of t h e  optimal 

d i v i s i o n  of t r a n s m i t t e r  p er between r e fe rence  s i g n a l  and 

message is  included as w e l l .  The r e s u l t s  of these ca l cu la -  

t i o n s  p o i n t  t h e  way to a v a s t l y  simpler set  of approximate 

performance qua t ions  which g ive  r e s u l t s  i n  good agreement 

w i t h  t h e  exac t  r e s u l t s .  

Th i s  approximate a n a l y s i s  provides a n a l y t i c a l  formulas 

for averall system performance which a r e  the  basis of a s i m -  

p l i f ied  design procedure,  using assymptotic forms, for  pre- 

d i c t i n g  t h e  opera t ion  of d i s p e r s i v e  channel communications 

systems i n  terms of fundamental des ign  parameters of t h e  

sys t e m  , 

5.1 Assumptions 

I n  t h i s  chapter we w i l l  cons ider  only t h e  t w o  m o s t  prom- 

i s i n g  demodulation systems for d i s p e r s i v e  channels - t he  

optimal demodulator, and the  high-SNR approximation t o  it, 
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t h e  minimum mean-square equal izer . '  

which w i l l  be assumed throughout t h e  chap te r ,  t h e  opt imal  

demodulator is  given by 

For white  a d d i t i v e  noise ,  

t h e  vec to r  estimate of t h e  message. An a l t e r n a t e  way of 

w r i t i n g  the  kth component of (5-1) w a s  developed i n  Sec t ion  

3.4 us ing  t h e  pseudo-inverse. 

The vector kk denotes  t h e  kth column of t h e  normalized mes- 

sage covariance mat r ix ,  _- #-a. 

The opt imal  equa l i ze r  i s  j u s t  t h e  zero-noise ve r s ion  of 

(5 -21 ,  i .e. ,  

where c - i s  t h e  vector of e q u a l i z e r  tap-gains .  

I n  t h i s  chap te r  w e  w i l l  be concerned w i t h  systems f o r  

which t h e  t r u e  s t a t e  of t h e  channel i s  n o t  known t o  t h e  

receiver, b u t  on ly  an  estimate, say  gr of t h e  t r u e  channel  H_ - 

i s  available.  Thus i n  (5-1) throuqh (5-3) t h e  channel- 

dependent q u a n t i t i e s  must be replaced by t h e i r  estimates. 

'These systems are opt imal  f o r  known channels ;  f o r  
unknown channels  t h e  s t r a t e g y  w i l l  be t o  use  t h e  same s t r u c -  
t u r e  as for known channels ,  b u t  s u b s t i t u t e  estimates of t h e  
channel parameters for  t h e  channel  dependent q u a n t i t i e s .  
terminology "optimal" w i l l ,  however, be r e t a i n e d .  

The 
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The channel estimates w i l l  be assumed t o  have been 

obtained by an o p t i  1 t r ansmi t t ed  r e fe rence  measurement 

system discussed  i n  Chapter e Then t h e  measurement errors 

o f . t h e  i n d i v i d u a l  channel  t a p  g a i n s  are s t a t i s t i c a l l y  inde- 

pendent of each o the  , and w i l l  be independent of t h e  message 

and no i se  as w e l l ,  €or either t ime-divis ion or frequency- 

d i v i s i o n  mul t ip lex ing  of t h e  message and r e fe rence  s i g n a l s .  

The measurement error covariance w a s  given by (4-32), 

where Es is  t h e  energy of t h e  r e fe rence  s i q n a l  w i th in  t h e  

measurement i n t e r v a l ,  Tm. 

wi th  power Ps available f o r  channel measurement, t h e  best 

choice  of r e fe rence  s i g n a l s  w a s  found t o  be t h e  class of 

constant-envelope s i g n a l s ,  for  which 

For a power-limited t r a n s m i t t e r ,  

Es = Ps x Tm 

Thus w e  can w r i t e  

* (5 -5)  

(5 -6)  

where nm is def ined  t o  be the  i n p u t  SNR of t h e  measurement 

s y s  tern . 1 

One l a s t  assumption which w i l l  be made is  t h a t  the  f irst  

(or,  i n  genera l ,  t h e  largest) channel  t a p  ga in  i s  known. 
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1 
- 1  

e,  
I 

T h i s  i s  done to  account  f o r  t h e  fact  t h a t  any cons t an t  mul t i -  

p l e  of t h e  message i s  an e r r o r - f r e e  message estimate for pur- 

poses of co n i c a t i o n .  The assumption of one known t a p  ga in  

mathematically f i x e s  t h e  o v e r a l l  ga in  l e v e l  of t h e  channel ,  

and, i n  effect, s imula tes  automatic  ga in  c o n t r o l .  
t- 

The method used t o  determine t h e  e f f e c t  of no isy  channel  

measurements on system performance i s  t o  f i n d  t h e  error v a r i -  

ance as a func t ion  of  t h e  t r u e  channel s t a t e  and t h e  

r e c e i v e r s  estimate of t h a t  state,  and then  average w i t h  

r e s p e c t  t o  t h e  e s t ima t ion  error, or "mismatch." For a chan- 

n e l  i, - t h e  optimal demodulator becomes 

where t h e  message S N R ,  rl i s  def ined  t o  be a 

. *  D 

and Pa is  t h e  power devoted t o  t r a n s m i t t i n g  t h e  message. The 

i zed  error covariance,  condi t ioned  on t h e  channel esti-  

mate,is  def ined  t o  be 
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This w i l l  be c a l l e d  t h e  channel mismatch func t ion .  Then t h e  

o v e r a l l  performance of t h e  system is  obtained by averaging 

with r e s p e c t  t o  6. - 

=- A 4 E & K ~ ( &  I (5-10) - 
Defining a measurement error matr ix ,  or mismatch matr ix ,  to be 

(5-11) 1 1 -  E=E-K=)  - 

w e  may w r i t e ,  for t h e  optimal demodulator, 

(5-12) 

Performing the opera t ions  ind ica ted  by (5-9) w e  ob ta in  t h e  

channel mismatch Eunction for the  optimal demodulator. 

(5-13) 

A similar procedure is  used to  ob ta in  a channel mismatch 

func t ion ,  Xk(h), for t h e  optimal equa l i ze r ,  (5-3) 
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c 

(5-14) 

T h i s  mismatch func t ion  is  then averaged over measurement 

errors t o  o b t a i n  t h e  overal l  e q u a l i z e r  performance, A k a  

(5-16) 

c 

Equations (5-131 and (5-15) are t h e  basic formulas for 

t h e  i n v e s t i g a t i o n  of t h e  e f f e c t s  of channel measurement error. 

Note t h a t  t h i s  error appears  i n  a complicated,  non-l inear  

fash ion  involv ing  matr ix  inve r ses ,  so k h a t  t h e  a n a l y t i c a l  

eva lua t ion  of the  expec ta t ion  wi th  r e s p e c t  t o  6 - of these mis- 

match func t ions  is  an i n t r a c t a b l e  problem. Ins t ead ,  numerical 

methods w e r e  used i n i t i a l l y  t o  perform t h e  averages of (5-10) 

and (5-16) i n  order t o  observe t r ends  and parameter depend- 

enc ie s .  These c a l c u l a t i o n s  provided enough i n s i q h t  i n t o  t h e  

problem t o  suggest  a much s impler  approximate performance 

c a l c u l a t i o n  which w i l l  be described i n  a later s e c t i o n .  

However, l e t  us  f i r s t  describe t h e  numerical  procedure used 

t o  perform t h e  "exact"  c a l c u l a t i o n s .  
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I t  should first of a l l  be noted t h a t  (5-13)and (5-15) 

are no t  the  m o s t  e f f i c i e n t  formulat ions for  numerical  pur- 

poses because of t h e  s p e c i a l  na tu re  of t h e  mat r ices  involved. 

(See Equations (2-26) and (2-35) .) These matrices have many 

zeroes i n  t h e  "corners," and i d e n t i c a l  elements a long diag- 

ona l s ,  so t h a t  it is poss ib l e  t o  develop special formulas 

for the  mat r ix  products which take advantage of these proper- 

t ies to  s u b s t a n t i a l l y  reduce the  number of m u l t i p l i c a t i o n s  

requi red .  However, the  de ta i l s  of these s implif icat ions will 

n o t  be discussed here. 

The numerical  technique uses t h e  intecgral  form of t h e  

expec ta t ion  opera t ion  of (5-10) or (5-16). ( A c t u a l l y  only 

t h e  diagonal  elements of (5-10) were computed). 

(5-17) 

p(6) - is t h e  j o i n t  p r o b a b i l i t y  d e n s i t y  func t ion  of t h e  channel 

tap-gain measurements, known from Chapter t o  be Gaussian 

and uncorre la ted ,  w i t h  mean va lues  equal t o  the  t r u e  values  

of the channel tap-gains.  T h i s  i n t e g r a l  i s  over t h e  TC=nC-l 

unknown channel t a p  ga ins  (recall from the  preceding sec t ion  

that hwas  assumed known) , so t h a t  it i n  genera l  impl ies  a 

mult ip le  i n t e g r a t i o n .  

of the integrund,  &(h) - 8 caused even double i n t e g r a l  ca l cu la -  

t i o n s  t o  be of astronomical dimensional i ty ,  so t h a t  t h i s  

"brute-force" approach w a s  restricted to the  case Of 

It  w a s  found t h a t  the  complicated form 
A 



1 2 5  

which &(k) is a func t ion  - -  

e channel s ta te  are 

t l  x k ( i 2 )  , of t h e  mismatch 

func t ion  of h, a lone.  A 

on t o  t h i s  func t ion  was generated 

c 

rement error va r i ance  

d (-8dB) I t h e  9 5  percent  con- 

s computed, 

6,) was computed a t  t h e  end- 

a l  and also a t  t h e  m i d -  

, d i v i d i n g  %he i n t e r v a l  i n t o  

i n t e r v a l s  t h e  va lue  of 

u ted  a t  t he  midpoint and com- 

n t  of t h e  s t r a i g h t  l i n e  

es of x k ( i i 2 )  a t  

a n t  d i f f e r e n c e  w a s  more than 

t h e  t r u e  value of A k ( A 2 ) ,  then  

%ed for each of t h e  new 

h func t ion  t u r n s  o u t  t o  be reasonably 

t i o n  procedure produces a 
c 

iecewise l i n e a r  approximation t o  Xk(h2 1. 

s obtained the  a c t u a l  i n t e g r a t i o n  i n  
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(5-17) is  a s t ra ight forward  c a l c u l a t i o n  for any va lue  of 

measurement error var iance  smaller than t h e  worst c a s e  i n d i -  

cated i n  s t e p  1. 

5.3 Resul t s  of t h e  Exact Calcu la t ions  

Some examples of t h e  r e s u l t s  of these c a l c u l a t i o n s  of 

the  Nexact"  performance equat ions are given i n  res 5-1 

through 5-4. 

t h e  average error var iance ,  or ou tpu t  SNR, for t h a t  component 

of t h e  vec to r  message estimate which the  r ece ive r  would 

regard as the  best on t h e  basis of t h e  noisy channel measure- 

ment. 

for var ious  va lues  of the  measurement SNR, nmTm. 

w i t h  nmTm=- is the l i m i t i n g  case of known channel sta te ,  and 

t h e  curve labeled "d ispers ion  bound" g ives  t h e  u l t ima te  per- 

T h e  performance c r i t e r i o n  is t h e  reciprocal of 

T h i s  is  plotted as a func t ion  of t h e  message SNR, ria, 

The curve 

formance fo r  any system opera t ing  over t h e  same channel,  that 

of the  optimal demodulator w i t h  i n f i n i t e  observat ion i n t e r v a l  

when the channel is known. 

The examples of Figures 5-1 and 5-3 w e r e  chosen t o  i l l u s -  

t ra te  the s i t u a t i o n  i n  which the  length  of the  observat ion 

i n t e r v a l ,  TO, is  no t  a l i m i t i n g  factor over the  ranges of 

parameters considered, and may be regarded as i n f i n i t e .  T h i s  

is evidenced by t h e  fact  t h a t  SNR, is  assymptot ica l ly  propor- 

t i o n a l - t o  na for  the known channel,  t h e  s i g n  of a system 

l imited by a d d i t i v e  noise ,  Conversely, F igures  5-2 and 5-4 

i l l u s t r a t e  the  s i t u a t i o n  where i n s u f f i c i e n t  observat ion time 

causes  t he  system to  be dispers ion- l imi ted  as na  gets large. 
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I n  all t hese  f i g u r e s  t h e  curves  t e n d  t o  level-off  and 

approach an assymptote as r l a + m l  so t h a t  t h e  g ross  e f f e c t  of 

channel measurement errors is seen t o  be another  u l t i m a t e  

performance l i m i t a t i o n  t o  be added t o  those  caused by a d d i -  

t i v e  no i se ,  incomplete e q u a l i z a t i o n ,  and channel d i s p e r s i o n  

i t s e l f .  The dependence of t h e  numerical va lues  of these new 

assyrnptotes upon t h e  v a r i o u s  des ign  parameters of t h e  system 

is n o t  a t  a l l  obvious from t h e  theory so f a r  developed, b u t  

t h e  approximate a n a l y s i s  of t h e  next  s e c t i o n  provides  good 

estimates, 

Another f e a t u r e  common t o  a l l  t h e  Figures  5-1 through 

5-4 is t h e  monotonic improvement i n  performance w i t h  r e s p e c t  

t o  both na  and nmTm, bu t  wi th  decreas ing  rates of improvement 

i n  each v a r i a b l e .  S ince  ria and nm are no t  independent, bu t  

are cons t ra ined  by t h e  power l i m i t a t i o n  on t h e  t r a n s m i t t e r ,  

t h i s  behavior sugges ts  t h e  p o s s i b i l i t y  of an opt imal  d i v i s i o n  

of t r a n s m i t t e r  power. Suppose t h e  a v a i l a b l e  power i s  P ,  t h a t  

6 r e p r e s e n t s  t h e  f r a c t i o n  of t h i s  power devoted t o  channel 

measurement, and  t h a t  n denotes  t h e  t o t a l  i n p u t  SNR avai lab ie ,  

That is ,  

(5-18) 

Then w e  can express  n, and rl 

parameter 6 .  

i n  terms of t h e  power d i v i s i o n  m 

(5-19) 
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(5-20) 

Then t h e  optimal power d i v i s i o n ,  60pt, i s  t h a t  choice of 6 

which maximizes SNR, . 
A t y p i c a l  example of t h e  dependence of performance on 6 

is  given by Figure 5-5, for the  same system and channel i l l u s -  

trated by Figure 5-1. 

reasonably long, the system performance i s  remarkably in sens i -  

t i v e  t o  power d i v i s i o n ;  it is  possible t o  devote only a few 

percent  of t h e  t r a n s m i t t e r  power t o  channel measurement and 

st i l l  achieve performance wi th in  l d B  of t h e  optimum. 

also t h e  s u b s t a n t i a l  improvement i n  maximum performance as Tm 

goes from 1 second (a s i n g l e  pulse  measurement) t o  100 

seconds ( a  long measurement sequence) ., Since,  a s  pointed out 

i n  Chapter 4 ,  measurement t i m e  i s  q u i t e  cheap compared t o  

observat ion t i m e ,  the  measurement should be made as long as 

poss ib l e ,  c o n s i s t e n t  w i t h  t h e  fad ing  r a t e  of t he  channel.  

When the  measurement i n t e r v a l  Tm is 

Note 

A search procedure w a s  used t o  optimize t h e  power d iv i -  

s i o n  for  many examples of s ingle-notch selective fading,  and 

t h e  optimal performance i s  t abu la t ed  i n  Tables 5-1 through 

5-4. The numbered columns i n  these tables correspond to  the  

following system conf igura t ions .  

1, The optimal demodulator w i t h  i n f i n i t e  obser- 

va t ion  i n t e r v a l  and known channel state. 

(The d i spe r s ion  bound.) 
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(5-21) 

2 ,  The opt imal  demodulator, To  = 1 0  seconds 

3. The optimal equa l i ze r ,  To = 1 0  seconds 

4 .  The opt imal  eq a l i z e r ,  To  = 20 seconds 

5. The optimal equa l i ze r ,  T, = 30 seconds 

The value of t h e  optimal power d i v i s i o n  w a s  found to  l i e  i n  

the  ranges below, f o r  a l l  e n t r i e s  i n  t h e  tables. 

< 0.58 , Tm = 1 opt  - 

- o p t  - 

- o p t  - 

0-38 < 6 

0.21  6 e 0,32 , Tm = 1 0  

- 

0.08 < 6 e 0.12 , Tm = 100 

However, these optimal values  were not  a t  all c r i t i ca l ,  as 

evidenced by Figure 5-5, which i s  q u i t e  t y p i c a l  of a l l  t h e  

cases considered i n  t h e  tables, 

Some examples taken €ram these tables i l l u s t r a t e  the 

genera l  behavior of complete demodulating systems for unknown 

d i s p e r s i v e  channels.  Figure 5-6 i s  a comparison of t h e  o p t i -  

m a l  demodulator and optimal e q u a l i z e r  under condi t ions  such 

t h a t  t he  length  of t h e  observat ion i n t e r v a l  is  not  a l i m i t i n g  

f a c t o r .  The optimal equa l i ze r  performance approaches t h a t  of 

t h e  optimal demodulator when the  inpu t  SNR is high, b u t  t h e  

l ack  of post-equal izat ion f i l t e r i n g  causes s i g n i f i c a n t  degra- 

da t ion  for TI small, t he  same behavior observed €or known 

channels.  Note the  c r u c i a l  importance of t h e  length  of t h e  

channel measurement, Tm, on overall system performance. 

Tm=l ( s i n g l e  pulse  measurement) t h e r e  is severe degradat ion 

i n  performance relative t o  t h e  case of known channel state 

For 

ITm=-). However, i f  t h e  fad ing  rate of t h e  channel i s  
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1 4 0  

s u f f i c i e n t l y  slow t h a t  the  measurement can  be performed over 

an i n t e r v a l  of 100 seconds,  then  t h e  optimal demodulator can 

be made t o  p e r f o  w i t h i n  Id3 of t h e  performance f o r  a known 

channel,  Bu t h i s  known-channel case is j u s t  t h e  C r a m e r - R a o  

bound on performance of 3 technique for communicating over 

d i s p e r s i v e  channels  (Sec t ion  4 .21 ,  so t h a t  t he  t ransmi t ted-  

r e fe rence  technique r e s u l t s  i n  very n e a r l y  ful ly-opt imal  

systems for demodulation i f  t h e  fad ing  rate is  reasonably 

slow (one hundredth of t h e  channel bandwidth). 

Figure 5-7 i l l u s t r a t e s  t h e  case where performance i s  

l imi t ed  due t o  i n s u f f i c i e n t  observa t ion  t i m e .  The remarks 

made i n  r e fe rence  t o  Figure 5-6 hold here as w e l l ,  b u t  there 

is  t h e  usua l  f l a t t e n i n g  of t h e  curves  for large TI caused by 

incomplete equa l i za t ion .  

Figure 5-8 compares t h e  opt imal  e q u a l i z e r  performance 

for t w o  d i f f e r e n t  va lues  of observa t ion  i n t e r v a l ,  

case is  i d e n t i c a l  t o  t h e  dashed curves  of Figure 2-7, for 

which T o  w a s  a l i m i t i n g  factor. However, for  T0=30 t h e  

system is  fundamentally noise- l imi ted ,  as evidenced by t h e  

l i n e a r  improvement w i t h  n. Notice t h a t  i nc reas ing  To when 

The To=10 * 

t he  system is  no t  l imited by incomplete e q u a l i z a t i o n  (be€ore 

t h e  To=10 curves  f l a t t e n  ou t )  causes  some loss i n  performance, 

an effect noted and explained a t  the end of Sec t ion  3.4 .  

Examination of  many examples of these "exact"  ca l cu la -  

t i o n s  of demodulator Performance leads to  t h e  conclusion t h a t  

nothing s t a r t l i n g  happens f o r  t h e  case of unknown channels .  

That is ,  t h e  system's  non-l inear  dependence on channel 
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measurement errors does n o t  appear t o  cause any threshold  

e f f e c t s  or c a t a s t r o p h i c  breakdowns i n  performance, a t  least 

for t h e  reasonably s m a l l  measurement errors considered. The 

degradat ion due t o  channel measurement error is gracefu1,and 

examining Figures  5-6 through 5-8 c a r e f u l l y ,  it can be seen 

t h a t  i nc reas ing  t h e  measurement error {reducing Tm) merely 

tends t o  push down the  e n t i r e  performance curve,  ( T h i s  i s  

not  e x a c t l y  t r u e ,  b u t  very nea r ly  so.) 

mate behavior of adding a mere c o n s t a n t  t o  t h e  e s t ima t ion  

error is  a fundamentally l i n e a r  effect ,  one i s  led to  a t tempt  

t h e  l i n e a r i z a t i o n  of t h e  e x a c t  performance equat ions  w i t h  

r e s p e c t  t o  channel measurement errors, and extend t h e  analy- 

t i c a l  results by approximation. 

Since t h i s  approxi- 

5 . 4  An Approximate Analysis of t h e  E f f e c t  of 
Noisy Channel Measurements 

For t h e  opt imal  demodulator the  m i s m a t c h  func t ion  w a s  

given by (5-13): 

(5-23) 

The d i f f i c u l t y  i n  averaging (5-22) w i t l l  r e s p e c t  t o  h I ,s 

caused by the  mat r ix  inve r ses .  

l i n e a r  v a r i a t i o n  of w i t h  r e s p e c t  t o  t h e  measurement error 

matrix E. 

Suppose t h a t  w e  t a k e  the  

A 

That is, i f  H_ - = H_ - + € E _ ,  - then  t h e  first v a r i a t i o n  
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. 

Thus, t o  a f i rs t  approximation, 

(5-24) 

(5-25) 

I f  (5-25) is then s u b s t i t u t e d  i n t o  (5-22) and a l l  terms higher 

than second order i n  - and - 11 are neglec ted(both  a r e  presumed 

small)  w e  ob ta in  

1 

(5-26) 

N o w  t he  measurement error appears i n  a simple way, and t h e  

average of &(&I w i t h  r e spec t  t o  6 - may be carried ou t  a n a l y t i -  

tally . 
(5-27) 
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This  same r e s u l t  can be obtained by a d i f f e r e n t  approach t o  

l i n e a r i z a t i o n  - assuming t h a t  t h e  mismatch occurs  i n  t h e  

a c t u a l  channel.  T h a t  is ,  f i x  t h e  demodulator and average 

over an ensemble of mismatched channels  rather than  fix t h e  

channel and average over an ensemble of mismatched demodula- 

tors.  I n  t h i s  a l t e r n a t e  approach t h e  m i s m a t c h  mat r ix  E _  - 

appears l i n e a r l y  a t  t h e  o u t s e t .  

To i l l u s t r a t e  the  second method cons ider  t h e  optimal 

e q u a l i z e r  (5-3) . 

P u t t i n g  t h e  mismatch i n  t h e  channel w e  have 

(5-28) 

so t h a t  

( 5 - 2 9  1 

(5-30) 

Taking t h e  average of (5-30 w i t h  r e s p e c t  t o  c ,  I and not inq  

t h a t  t h e  measurement errors have zero  mean, w e  o b t a i n  t h e  

average error var iance  f o r  t h e  optimal equa l i ze r .  
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(5-31) 

T h i s  unwieldy express ion  is considerably s impl i f ied  by us ing  

(5-28) to  i d e n t i f y  c ,  - and (3-45) t o  i d e n t i f y  t h e  e q u a l i z a t i o n  

error, E ( T o ) .  2 

Both the optimal demodulator performance, (5-271, and 
J t h e  optimal e q u a l i z e r  performance, (5-321, r e q u i r e  t h e  mat r ix  

PI;,E*T1 . For uncorre la ted ,  zero-mean measurement errors 
L 4 

with va r i ances  (nmTm)-’, and assuming a - has s t a t i o n a r y  covar- ‘1 

iance,’ it can be shown 

and (2-26) t h a t  

us ing  t h e  matrix d e f i n i t i o n s  (5-11) 

- TC - - T L  S m m  
(5 -33)  

Thus t h e  approximate performance of t h e  opt imal  demodulator 

is  

t 

f ‘ A l l  elements of each d iagonal  of 2 are i d e n t i c a l .  
( Q  -a is a T o e p l i t z  ma t r ix ) .  
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(5 -34)  

and the  performance of the  opt imal  e q u a l i z e r  is 

Tc CT Q C * .  (5-35) 
* 

c T c  + -  - =a - 2 1 
Xk = E. (To) + - 

‘mTm na - - 

Comparing t h e s e  equat ions  w i t h  t h e  correspondinq expres- 

s i o n s  for t h e  case of known channels  i n  Sec t ion  3.5 shows 

t h a t  t h e  noisy  channel measurements are accounted for by a n  

a d d i t i o n a l  t e r m ,  

rn 

for t h e  opt imal  demodulator, and 

L 

G.T a c* C 
=a-  -. 

‘mTm 

(5-36) 

(5-37) 

for t he  opt imal  e q u a l i z e r .  

ment error,  (nmTm) , goes t o  zero. 

B o t h  go t o  ze ro  as t h e  measure- 
-1 

Equations (5-34) and (5-35), obtained by l i n e a r i z i n g  t h e  

dependence upon measurement error,have been found t o  be i n  

good agreement (wi th in  1 dB) w i t h  t h e  r e s u l t s  of t h e  “exact” 

performance c a l c u l a t i o n s  of Sec t ion  5.3 for  reasonably s m a l l  

measurement errors (n T > lOdB) . Although, because of t h e  

extreme d imens iona l i ty  of the  e x a c t  performance equa t ions ,  

t h e  t w o  methods could be compared only  f o r  t h e  case of 

m m -  
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single-notch f ding,  (Tc=l)  , it is  f e l t  t h a t  (5-34)  and (5-35) 

are v a l i d  for  higher-order channels as w e l l ;  t h e  degradat ion 

due t o  imperfect channel measurements is simply propor t iona l  

t o  the number of unknown channel t a p  ga ins ,  a p e r f e c t l y  logi-  

cal r e s u l t .  

5.5 The I n f i n i t e - I n t e r v a l  Approximation 

Equations (5-34) and (5 -35 ) ,  although v a s t l y  easier to  

eva lua te  than  the  exac t  performance equat ions,  nonetheless  

r equ i r e  matr ix  invers ion  because they s t i l l  r e t a i n  t h e  "exact" 

dependence upon observat ion i n t e r v a l .  

t i o n  is poss ib l e  i f  w e  assume, i n  t h e  manner of Sect ion 3.5, 

t h a t  t h e  observat ion i n t e r v a l  merely puts an upper l i m i t  on 

system performance through the  equa l i za t ion  error, E (To), and 

that  below t h i s  l i m i t  t h e  observat ion i n t e r v a l  may be regarded 

as i n f i n i t e  s i n c e  the  system is  fundamentally noise- l imited.  

Y e t  more s implif ica-  

2 

For TO=- t h e  optimal demodulator is  a f i l t e r ,  f ( t ) ,  

s a t i s f y i n g  Equation ( 2 - 2 1 ) .  

(5 -38)  

Then, p u t t i n g  the  measurement error dependence i n t o  t h e  chan- 

n e l  s ta te ,  t h e  message estimate is 

(5-39) 
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for which the average estimation error can be shown to be 

and where the expectation has been carried out over message, 

noise, and measurement error. 

Fourier transforms with the aid of ParseVal's formula and 

Equation (2-23) for the Fourier transform of f(t) we obtain 

Rewriting (5-40) in terms of 

Recognizing that integrals of this type are most easily 

carried out in the z domain usinq residue calculus, we 

replace (5-41) by its z transform analog, letting Ra(z) denote 

the z transform of the normalized message autocorrelation. 

If, at the same time, we include the effect of finite To by 

adding in the equalization error E 

approximation to the optimal demodulation performance is 

obtained. 

2 (To), the followinq 
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This expression, although it may not look simple, 
2 requires only algebraic manipulations if E 

by the method of ”equivalent single-notch channels *’ described 
in Section 3.5. 

(To) is estimated 

Recalling that the optimal equalizer is just the assymp- 

totic form of the optimal demodulator as na-, its perform- 

ance is given by the assymptotic form of (5-42). 

(5-43) 

Comparing these last two equations for unknown channels 

with (3-68) and (3-691, for known channels, the effect of 

noisy measurements is seen to be accounted for by the middle 

term in 15-42] and (5-43). Since the performance curves are 

known to flatten out as rta+-(see Figures 5-1 through 5-41, 

an estimate of the resultant assymptote is now known to be 
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(5-44) 

so t h a t  f a m i l i e s  of measurement error assymptotes can e a s i l y  

be drawn f o r  design purposes i n  t h e  manner of F igures  5-1 

The o t h e r  required assymptotes w e r e  a l r eady  . 
known from Sect ion  3.5. Thus w e  have a complete quick-design 

procedure based on assymptotic forms, similar i n  na tu re  t o  

t h e  Bode p l o t s  of c o n t r o l  theory.  

5.6 Optimal Power Div is ion  

Equations (5-42) and (5-43) may be used t o  o b t a i n  a s i m -  

p l e  approximate formula f o r  opt imal  power d i v i s i o n ,  d i scussed  

f i r s t  i n  Sec t ion  5-3, I n  p r i n c i p l e ,  a l l  one has t o  do  is 

s u b s t i t u t e  (5-19) and (5-20) f o r  na and nm r e s p e c t i v e l y  i n t o  

(5-42) and (5-43) and minimize wi th  r e s p e c t  t o  6 .  The o p t i -  

m a l  6 w i l l  then  be a r a t h e r  complicated func t ion  of t h e  chan- 

n e l  state, message spectrum, t o t a l  SNR, n, Tc, and Tm. 

is  undes i rab le  s i n c e  a feedback l i n k  would be requi red  t o  

inform t h e  r a n s m i t t e r  of t h e  state of t h e  channel.  Howeverc 

This  

as w a s  pointed o u t  i n  Sec t ion  5.3, t h e  opt imal  power d i v i s i o n  

i s  n o t  a t  a l l  c r i t i ca l  (Figure 5-51,  e s p e c i a l l y  i f  Tm > >  1. 

A simple " ru l e  of t h  *' f o r  opt imal  power d i v i s i o n  which lies 

wi th in  t h e  ranges given by (5-21) and i s  independent of 

T 

channel state,  m e  sage spectrum, and n is  obtained by assum- 

i n g  a white  message spectrum i n  (5-43) (i.e. R a ( z ) = l ) .  The 
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r e s u l t a n t  d i v i s i o n  of power, i f  n o t  p r e c i s e l y  optimal,  is a t  

least very good. 

S u b s t i t u t i n g  (5-19) and (5-20) i n t o  (5-43) w i t h  Ra(z) =1 

w e  obta in  

Minimizing w i t h  r e s p e c t  to d w e  e a s i l y  ob ta in  

(5-46) 

a simple formula agreeing w e l l  w i t h  (5-21) for Tc=l .  

Assuming t h a t  t h i s  expression g ives  a "good" d i v i s i o n  of 

power w e  s u b s t i t u t e  for qa and qm i n  (5-42) and (5-43) t o  

obta in  formulas for  o v e r a l l  system performance. For t h e  op t i -  

m a l  demodulator t he  performance i s  
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+ c2(T,) , 

while for the optimal equalizer we have 

(5 -47 )  

These equations for the overall performance of demodula- 

tors for unknown dispersive channels are known to be reason- 

able approximations to the actual performance for single- 

notch selective fading, the only case for which exact results 

were available, and they appear to be reasonable for higher- 

order channels as well. 

the gross design parameters of the system: 

observation interval, TO, which determines system complexity; 

total S N R  n, determin d by the available transmitter power, 

receiver noise figure, and channel attenuation; measurement 

time, Tmr limited by the channel fadinq rate; and channel 

delay-spread, Tc 

signalling bandwidth. 

analysis could be performed, the worst case taken to be a 

They are simple to evaluate given 

demodulator 

dependent upon the transmission medium and 

For purposes of design, a worst-case 
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s i n g l e  notch fade a t  the peak of the  s ignal  spectrum. 

a p p ~ o x i ~ a t i o n  p ocedure provides a s tar t ing  point  for t h e  

This 

ctical design of d i ~ p e ~ s ~ v ~  channel co nication systems. 

1 
'i 
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CHAPTER 6: CONCLUDING REMARKS 

6.1 Summary and Conclusions 

In Chapter 1 several questions about the demodulation of 

signals passed through selective-fading channels were posed. 

An appropriate summary of this research is an attempt to 

answer these questions. 

1, First of all, the channel is assumed to be a 

bandlimited, slowly time-varying, selective 

fading channel described by a tapped delay- 

line channel model whose parameters are 

stationary over time intervals consistent 

with the rate of fading. 

The optimal demodulator for analog communica- 

tion over this type of channel is developed 

using the technique of maximizing a-posteriori 

probability. The receiver structure obtained 

for non-linear modulation is found to defy 

2. 

practical implementation (and analysis as well) 

in its derived form, so the research is 

restricted to consideration of linear passband 

recovery of the transmitted signal, an opera- 

tion both practical and amenable to analysis. 

Wiener-Hopf methods are used to obtain the 



156  

minimum mean-square-error demodulator, using 

an i n t e g r a l  formulation t o  study idea l i zed  

systems which are assumed t o  observe the 

e n t i r e  p a s t  and f u t u r e  of the  channel output ,  

and a sampled-data formulation t o  i n v e s t i g a t e  

more realistic systems having f i n i t e  observa- 

t i o n  t i m e .  

I t  is found t h a t  channel d i spe r s ion  pro- 

duces an i n t r i n s i c  loss i n  performance rela- 

t i v e  t o  non-fading channels.  That is, no 

amount of s o p h i s t i c a t e d  s i g n a l  processing 

can completely overcome the  effects of d is -  

pers ion.  It  is  also found t h a t  the  length  

of the  observat ion i n t e r v a l  l i m i t s  t h e  per- 

formance of t h e  demodulator for high SNR 

whenever fading i s  severe  . 
The optimal d i s p e r s i v e  channel demodula- 

t o r  t u r n s  ou t  t o  r equ i r e  some rather sophis- 

ticated f i l t e r i n g  opera t ions  which are n o t  

e a s i l y  adapted t o  d i f f e r e n t  channel states, 

hence expensive t o  mechanize. Consequently, 

effor t  is devoted t o  t h e  cons idera t ion  of 

suboptimal approximations t o  t h e  optimal 

demodulator which use t r a n s v e r s a l  equa l i ze r s  

based on a zero-noise assumption. Such 

equa l i ze r s  w e r e  known t o  be p r a c t i c a l  from 

the  l i t e r a t u r e .  A novel approach t o  the  



performance a n a l y s i s  of zero-forcing and min- 

i m u m  mean-square error e q u a l i z e r s  l eads  t o  

t h e  conclusion t h a t  t he  l a t te r  e q u a l i z a t i o n  

algorithm works  s i g n i f i c a n t l y  better than  t h e  

former for severe fad ing  channels .  I n  addi- 

t i o n ,  it is  found t h a t  t h e  dependence of 

e q u a l i z e r  performance upon i ts  observa t ion  

i n t e r v a l  or l eng th  (hence cost) i s  b a s i c a l l y  

governed by t h a t  ze ro  of t h e  se l ec t ive - fad ing  

channel which is closest t o  t h e  u n i t  circle 

i n  t h e  complex 2 plane.  Thus, for  purposes 

of approximating the e q u a l i z a t i o n  error, h igh  

order d i s p e r s i v e  channels  can be reduced t o  an 

equ iva len t  single-notch channel.  

An i n v e s t i g a t i o n  of t h e  performance of 

e q u a l i z e r s  i n  t h e  presence of no i se  shows t h a t  

the  optimal e q u a l i z e r  is  a near-optimal dernod- 

u l a t o r  under low-noise cond i t ions ,  b u t  t h a t  

there is  s e r i o u s  degradat ion when there is 

much noise ;  t h e  zero-forcing e q u a l i z e r  works 

considerably less w e l l .  A study of post-  

e q u a l i z a t i o n  f i l t e r i n g  techniques t o  improve 

the  l o w  SNR performance leads t o  t h e  nega t ive  

conclusion t h a t  they  are n o t  w o r t h w h i l e :  

t h e  e x a c t  opt imal  demodulator works w e l l  f o r  

l o w  SNR.  

only 
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Fina l ly ,  p u t t i n g  together a l l  the  r e s u l t s  

f o r  known-channel demodulation, it is  found 

that the  genera l  performance of t h e  optimal 

demodulator and optimal e q u a l i z e r  may be 

approximately described i f  t h e  assymptotes of 

the  performance as the  no i se  goes t o  zero,  and 

as t h e  observat ion i n t e r v a l  goes t o  i n f i n i t y ,  

are known, which they are from previous r e s u l t s  

of this research. T h i s  makes poss ib l e  a graph- 

i ca l  design procedure similar t o  t h e  Bode dia- 

gram of c o n t r o l  theory.  

3. When t h e  channel is unknown, it must i n  some 

way be estimated i n  order t o  e f f e c t i v e l y  demod- 

u l a t e  t h e  message. Two d i f f e r e n t  channel meas- 

urement techniques are considered: channel 

es t imat ion  using the  message alone t o  probe 

the  channel,  along w i t h  i ts  a - p r i o r i  s t a t i s t i c s :  

channel e s t ima t ion  making use of a s p e c i a l  

re fe rence  s i g n a l  known i n  advance t o  t h e  

r ece ive r .  The former technique i s  desirable i n  

t h a t  a l l  t r a n s m i t t e r  power is devoted t o  i n f o r -  

mation t r a n s f e r ,  bu t  it is found t o  be imprac- 

t i ca l  f o r  analog communication, However, i t s  

u l t ima te  performance is given by t h e  C r a m e r - R a o  

bound, a u s e f u l  theoretical r e s u l t  for judging 

t h e  a c t u a l  performance of t ransmit ted-reference 
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measurement systems, systems which are q u i t e  

easy  t o  bu i ld .  

J o i n t  opt imizat ion of t he  channel s ta te  

estimate and re ference  s i g n a l ,  s u b j e c t  t o  a 

power c o n s t r a i n t ,  g ives  a r e fe rence  s i g n a l  

op t ima l i ty  c r i t e r i o n  which i s  exac t ly  satis- 

f i e d  by c e r t a i n  classes of pu lse  s i g n a l s  and 

approximately by many other classes. Consid- 

e r a t i o n  of t r a n s m i t t e r  peak-power l i m i t a t i o n s  

and ease  of genera t ion  i n d i c a t e s  t h a t  PN 

sequences although suboptimal,  make admirable 

re ference  s i g n a l s ,  f o r  either pe r iod ic  or 

aper iodic  measurements. 

4 .  Imperfect channel measurements a f f e c t  t h e  per- 

formance of t ransmit ted-reference communica- 

t i o n s  systems of t h e  estimator-correlator type 

i n  a complicated,  non-linear way. Numerical 

methods are used t o  i n v e s t i g a t e  system per- 

formance for single-notch selective fad ing  

channels,  t h e  only computationally f e a s i b l e  

case; t h e  r e s u l t s  show t h a t  the  basic e f f e c t  

of noisy channel measurements is t o  increase  

the e f f e c t i v e  equa l i za t ion  error, t h e  assymp- 

t o t i c  demodulator performance as t h e  a d d i t i v e  

noise  goes t o  zero.  Optimal d i v i s i o n  of t r ans -  

m i t t e r  power between re ference  s i g n a l  and 

message i s  s tud ied  as w e l l .  I t  is discovered 
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is not at all critical, 

and that if the fading rate of the channel per- 

mits long channel measurements, only a small 

fraction of the transmitter power need be 

devoted to channel measurement, making the 

transmitted reference technique very nearly 

fully optimal in the sense of the Cramer-Rao 

bound on performance. In addition, the overall 

system performance curves (optimized with 

respect to power division) are, for different 

values of measurement error, found to be very 

nearly mere translations of one another along 

the performance axis. This suggests a 

linearized performance analysis to find the 

appropriate constant of translation. 

5. Equivalent linearization of the system depend- 

ence upon channel measurement errors provides 

a reasonably accurate estimate of the effect 

of these errors on system performance which 

is far simpler than the exact performance com- 

putations. An additional approximation which 

isolates the effects due to finite observation 

interval from the effects of additive noise and 

channel measurement errors permits the descrip- 

tion of overall system performance in terms of 

easily-computed integrals which determine the 

assymptotes of the performance curves. 
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These assymptotes may be used f o r  a graph- 

i c a l  design procedure t o  provide quick e s t ima tes  

of t h e  performance of dispers ive-channel  commun- 

i c a t i o n s  systems s u i t a b l e  for  " f i r s t - c u t "  design 

or parametr ic  s tud ie s .  Only fundamental system 

parameters are re ta ined:  observat ion i n t e r v a l  

( equa l i ze r  length)  ; receiver noise  f i g u r e  

(noise  power); channel de lay  spread; measure- 

ment i n t e r v a l  ( fad ing  ra te) ;  t r a n s m i t t e r  power: 

s i g n a l  power spectrum; channel state (could be 

accounted f o r  on a worst-case bas is ) .  

F i n a l l y ,  a " r u l e  of thumb" for t r a n s m i t t e r  

pwoer d i v i s i o n  is  developed which depends only 

upon the  gross  channel parameters of de lay  

apread and fading r a t e ;  t h i s  d i v i s i o n  of power 

provides  nea r ly  optimal performance without 

r equ i r ing  a feedback l i n k  from r e c e i v e r  t o  

t r a n s m i t t e r  . 
6.2 Some Areas f o r  Fur ther  Research 

I n  t h e  course of t h i s  research three t o p i c s  f o r  f u t u r e  

research suggested themselves, b u t  were not  a c t i v e l y  pursued. 

1, There must be a better op t ima l i ty  c r i t e r ion  f o r  

non-linear,  bandwidth-expanding modulation 

systems ope ra t ing  over d i s p e r s i v e  channels 

than either MAP o r  minimum mean-square passband 

equa l i za t ion ,  Both these cr i ter ia  r equ i r e  



passband de lay  li w i t h  bandwidths much 

wider t ed by t h e  message 

i tself .  I t  would be eminently desirable from a 

practical  viewpoint t o  perform t h e  equal iza-  

t i o n  on t h e  message estimate a t  baseband, per- 

haps i n  a nonmlinear way, or preceded by a non- 

l i n e a r  device. A new c r i t e r i o n  which somehow 

cons t ra ined  t h e  de l i n e  t o  ope ra t e  a t  base- 

band would be of 9 t i n t e r e s t .  

2, The f a c t  t h a t  equa l i zae r  performance i s  

governed by t h a t  channel root closest t o  the 

u n i t  circle i n  the Z plane sugges ts  an inves- 

t i g a t i o n  of t h e  d i s t r i b u t i o n  of channel roots 

for a s t a t i s t i ca l ly  described channel,  I n  

t e s t i n g  t h i s  p r i n c i p l e  by random examples 

some feel w a s  obtained for  t h e  problem, bu t  

w a s  purely q u a l i t a t i v e  and empir ica l .  

would be i n t e r e s t i n g  t o  f i n d  t h e  effect  of 

t h e  channel c o r r e l a t i o n  bandwidth and mult i -  

path i n t e n s i t y  prof i le  [ 1 1  on t h i s  d i s t r i b u -  

t i o n .  

It 

3. T h i s  research assumed t h a t  t h e  channel was 

s t a t i o n a r y  over a given t ime- in te rva l .  A 

direct extension would be t o  assume a first- 

order t i m e  v a r i a t i o n  ( t h a t  is, assume a 

channel impulse response of t h e  form 

h ( t ) = h o ( t )  + t h l [ t )  and f ind  t h e  optimal 

162 
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demodulators and channel estimators based on 

this assumption. Although rate estimators 

are as a rule inaccurate, perhaps the overall 

system dependence is relatively insensitive 

to this type of error. In any event, the 

unpalatable fact of channel time-variation 

would be explicitly accounted for, and some 

fears about the effects of non-stationarity 

could possibly be laid to rest. 
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APPENDIX A 

DERIVATION OF THE MAP ESTIMATE 

In Section 2.2 the generalized MAP optimality criterion 

was defined to be the minimum of the functional c 2  given by 

(2-11) . 

+ I Ra’(X-T)a(X)a*(r)dXdT 
Ta Ta 

This functional is optimized by a variational procedure. 

a(t) = i ( t)  + an(t) I where $(t) is the optimal estimate of 

a(t), and rl(t) is an arbitrary complex perturbation. Then 

Let 

s(t) is the solution to the variational equation 1 

Noting that 

(A-2 1 

(A-3) 

h e  reference 46 8 Chapter 4 e 
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and making use  of t h e  Hermitian symmetry of the covariance 

1 opera to r s  we ob ta in  

(A-4)  

where 

Equation (A-4) must be s a t i s f i e d  f o r  any a r b i t r a r y  complex 

pe r tu rba t ion  n ( A ) ;  s i n c e  both t h e  real  and imaginary p a r t s  of 

n ( X )  can be chosen independently,  then both - t h e  real and 

imaginary p a r t s  of t h e  t e r m  i n  braces i n  (A-4) must be iden -  

t i c a l l y  zero.  That  i s ,  

(A-6) 

f o r  a l l  AcTa. Convolving (A-6) w i t h  t he  p o s i t i v e  d e f i n i t e  

opera tor  Ra and no t ing  t h e  r e s u l t a n t  i d e n t i t y  on t h e  l e f t -  

hand side w e  o b t a i n  
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k T a  . 
This can be written more conveniently as 

(A-8) 

tcTa 

This integral equation, (A-81, is a necessary condition for  

the MAP estimate. 
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APPENDIX R 

THE EQUIVALENCE OF THE MAP AND MEAN SQUARE ERROR CRITERIA 

FOR LINEAR MODULATION 

For l i n e a r  modulation the  MAP estimate of a message 

transmitted over a known d i spers ive  channel i s  given by 

(2-12) t o  be 

for &Ta.  Defining the  function g ( ~ )  to  be 

and operating on (B-3)  with the n o i s e  covariance funct ion,  

%, we f ind  

Then (B-2) can be wri t ten  



172 

Operating on both s i d e s  of (B-5) with the channel impulse 

response, h ( t )  , we obtain 

The l a s t  equality above comes from the general proper- 

t ies of random s ignals  passed through linear systems. Sub- 

s t i t u t i o n  of (B-6) into (B-4 )  g ives  

(B-7)  
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i - f 3 

i 
.) 

Equations (B-5) and (B-7 )  together define the MAP estimate. 

Now suppose that S(t) is the minimum mean-square error 

estimate of a(t) given by (2-20) and (2-21). That is, 

where 

Then, using ( B - 7 )  in Equation ( B - 8 )  , 

Making use of (B-9 )  and then (B-5) we find 

Thus the minimum mean-square error estimator and the MAP 

estimator are the same. 

(B- l I . )  
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APPENDIX C 

EVALUATION OF THE OPTIMAL DEMODULATOR PERFORMANCE FOR 

SINGLE-NOTCH SELECTIVE FADING 

The performance of t h e  f i n i t e  observat ion in t e rva l  o p t i -  

m a l  demodulator was given by t h e  error covariance mat r ix ,  

(2-33). 

I- 1 - 1  

For single-notch fading t h e  channel  i s  given by 

((2-21 

rl 1+r2 

N o t e  t h a t  t h e  following i d e n t i t i e s  hold i f  we make t h e  defi- 

n i t i o n  

1+ J 1-4p2 
l h J 2  = 2 I lh21 

(C-3 )  

(C-4) 

“1 
1 

* 3  
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I f  t h e  a d d i t i v e  noise  i s  assumed t o  be bandlimited and w h i t e ,  

= I,I it is  poss ib l e  t o  develop an a n a l y t i c a l  expression %I 

f o r  the  diagonal  elements (error var iances)  of - R .  For a 

white message spectrum w e  have s1 = e: I ,  while  f o r  t h e  Markov 

message source of Sec t ion  2 .5 ,  t' 
of Equation (2-35). I n  either case t h e  matr ix  Q - of (C-1)  is 

a t r i -d iagonal  matr ix  of t h e  form 

i s  t h e  t r i -d i agona l  matrix 

where t h e  parameters a ,  b, c, and K are i d e n t i f i e d  i n  Table 

c-1. 

L e t  us  now suppose t h a t  t h e  observat ion i n t e r v a l  is of 

length T o w  seconds,  so t h a t  Q - is  of order m + l ,  and is a 

funct ion of m. 

Ncrw de f ine  t h e  following determinants of a r b i t r a r y  order n. 



k aJ dlt 
c, 
a, + 
b a 
PI 

8 W I  d 
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A(n) = d e t  

p E * .  
B(n) = 

a c* 0 -  
c l .  

de t  -. t ‘ 1  
‘ c  b 

. 
. 1 c* 

0 c 1  

177 

((2-9 1 

(C-10) 

(C-11) 

Then, using elementary r o w  ope ra t ions ,  t h e  following recur -  

s i o n  formulas involving these determinants  may be der ived.  

(C-13) 2 
A(n) = a D(n-1) - Icl D(n-21, A(O) = 1, A ( 1 )  = a, 

(C-14) 2 
B(n) = b D(n-1) - i c I  D(n-21, B ( 0 )  = 1, B ( 1 )  = b e  

(C-15) 2 
D(n) = D(n-1) - I c l  D(n-21, D ( 0 )  = 1, D ( 1 )  = 1. 

Also, t h e  ith diagonal  co fac to r  of the matr ix  Q(m) can be seen 

to be 

I 
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Km A ( i - 1 )  B ( m - i + l ) ,  (C-16) 

so t h a t  C r a m e r ' s  r u l e  may be appl ied  t o  eva lua te  t he  diagonal  

elements of ;?;;. 

1 Km A ( i - l )  B ( m - i + l )  
n det &(m) [Alii = - * 

- 

B o t h  A b )  and B(n) i n  (C-17) are given i n  terms of D(n), so 

w e  seek a closed-form s o l u t i o n  for  D(n), Examination of 

(C-15) reveals t h a t  D(n) is t h e  s o l u t i o n  t o  a second o r d e r p  

l i n e a r ,  homogeneous d i f f e r e n c e  equat ion which may be solved 

by s tandard techniques'  subject t o  t h e  i n i t i a l  condi t ions  

which are given. 

n+l J J 2 n+l - (1- 1 - 4 1 ~ 1  ) (1+ 1-41c12,  D(n) = 
2n+1J1-4 c 2 

Thus t h e  error var iances  for t h e  optimal demodulator are 

e x p l i c i t l y  determined as func t ions  of t h e  observat ion i n t e r -  

val .  

I n  Chapter 3 it is desirable t o  f i n d  the  performance of 

\ 
" I  
i 

i the optimal demodulator as the  noise  goes t o  zero (n + = ) .  

'Van D e r  P o l ,  €3 ., H e  Bremmer, Operat ional  Calculus I 
Cambridge Universi ty  Press, London, 1964 9 Ch a p t e r  13. 
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In particular, we are interested in the (m+l)st diagonal ele- 

ment of &, which, by ((2-17) , can be written 

2 (C-19) 
a D(m-1) - Icl D(m-2) 1 

" 
=:-. 

ab D(m-1) - (a+b)lc12D(m-2) + l~1~D(m-3) 

After considerable manipulation, and using (c-15) , it can be 

shown that 

(C-20) 

where K, (0) and K 2 ( n )  are functions of n with the assymptotic 

forms below. 

(C-2 1) 

0 , White messaqc 
lim K2(n7) = 

~ 2 p C o s 0 ~ ]  , Markov Message 
(C-22) 

n -tw 

Using (C-18), (C-3) through ( C - 5 )  , and Table C-1 we obtain 

the following : 
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l i m  D ( m - 1 )  (1+ J---- 1 - 4 p 2 )  - (1- J) 1 - 4 p  m 

4- 4- m + l  n-*w m- = e 

(1+ 1 - 4 p  1 m+l -( 1- 1 - 4 p  1 

. 

Thus, for t h e  wh i t e  message source we have 

2 A 
E (m) = 

W 

= (r2Im 

(C-23) 

2m 
2 ( m + l )  

1 1 - r  
!hit2 1 - r 

(c-24) 

whi le ,  for t h e  Markov messaqe source,  t h e  mean square e r r o r  

is  

(C-25) 

The s u b s c r i p t s  w and M s t and  for whi te  and Markov message 

sources  r e spec t ive ly .  I f  t he  observat ion i n t e r v a l ,  To = m, 

is  s u f f i c i e n t l y  large, then  t h e  mean square error for the  

whi te  message, e W ( m ) ,  w i l l  be small, 2 
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so t h a t  t h e  error f o r  the Markov message i s  approximately 

2 
w E (m) 

E 2 ( m )  

4 1 + L2 p s  + 2pcosw M 
1-x 

(C-26) 

Thus t h e r e  is an improvement or deqradat ion i n  t h e  Markov 

message case relative t o  t h e  case of a w h i t e  message: 

f a c t o r  is  seen t o  depend upon t h e  fad ing  depth (through p 1 

and upon the  placement of t h e  fad ing  notch, w O r  b u t  i s  inde- 

pendent of t h e  observat ion i n t e r v a l .  

t h i s  



182 

,!& 

i: ,, 

APPENDIX D 

PN SEQUENCES WITH SMALL APERIODIC AUTOCORRELATION 

T a b l e  D-1 i s  a l i s t i n g  of t h a t  c y c l i c  permutation of a 

PN sequence of length  Ts (given i n  t h e  lef t -hand column) 

which has t h e  smallest poss ib l e  out-of-phase au tocor re l a t ion  

i n  t h e  v i c i n i t y  of t h e  o r i g i n  of t h e  de l ay  a x i s .  

gives  t h e  corresponding au tocor re l a t ion  values .  

f o r  t h e  longer sequences the  au tocor re l a t ion  i s  e s s e n t i a l l y  

zero  ( re la t ive  t o  t h e  peak, hence near-optimal for channel 

measurement. Consequently, it is  poss ib l e  to  make long I 

aper iodic  channel measurements w i t h  easi ly-generated cons t an t  

envelope s i g n a l s  and achieve very nea r ly  optimal performance. 

Table D-2 

Note t h a t  
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